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Introduction
Metabolomics is a rapidly growing field that gains more 
and more attention from both industry and scientific 
communities. By integrating the capabilities of different 
disciplines such as analytical chemistry and statistics, 
metabolomics aims to gain a systematic understanding 
of quantitative changes in the level of metabolites from 
the biology or chemical system [1]. Plant metabolomics 
is a key research area in plant science and it refers to the 
quantitative analysis of metabolites in plant system. It is 
widely used as an important technology and tool for phe-
notyping and diagnostic analyses of plants [2]. Owing 
to its great potential in capturing the molecule changes 
from complex biological system, metabolomics technol-
ogy is also used for functional annotation of genes and 
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Abstract
Plant metabolomics is an important research area in plant science. Chemometrics is a useful tool for plant 
metabolomic data analysis and processing. Among them, high-order chemometrics represented by tensor 
modeling provides a new and promising technical method for the analysis of complex multi-way plant 
metabolomics data. This paper systematically reviews different tensor methods widely applied to the analysis 
of complex plant metabolomic data. The advantages and disadvantages as well as the latest methodological 
advances of tensor models are reviewed and summarized. At the same time, application of different tensor 
methods in solving plant science problems are also reviewed and discussed. The reviewed applications of tensor 
methods in plant metabolomics cover a wide range of important plant science topics including plant gene 
mutation and phenotype, plant disease and resistance, plant pharmacology and nutrition analysis, and plant 
products ingredient characterization and quality evaluation. It is evident from the review that tensor methods 
significantly promote the automated and intelligent process of plant metabolomics analysis and profoundly affect 
the paradigm of plant science research. To the best of our knowledge, this is the first review to systematically 
summarize the tensor analysis methods in plant metabolomic data analysis.
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understanding the cellular response to biological condi-
tions in plant science [3]. Apart from these typical appli-
cations, metabolomics technology has also been used for 
understanding other complex plant science problems. 
For example, investigating the natural variance of metab-
olite during the plant evolution makes it possible for 
precise modification and personalized customization of 
metabolic pathways in plants [4]. Therefore, plant metab-
olomics is of great potential and importance for plant sci-
ence investigations.

Plant metabolomics analysis generally falls into two 
categories: targeted metabolomics analysis and untar-
geted metabolomics analysis [5]. In targeted metabolo-
mics analysis, the interested and specific metabolites are 
analyzed in a targeted way and the chemical information 
are selectively extracted from the whole metabolomics 
dataset. Unlike targeted metabolomics, in untargeted 
metabolomics, the analysis is generally performed in a 
non-specific manner. That is to say, the aim of untargeted 
metabolomics analysis is to extract as much metabolite’s 
information as possible from global metabolites spectra. 
The global metabolites instead of any targeted ones are 

of interests during the analysis [6]. Moreover, very little 
information needs to be known about the samples in 
untargeted metabolomics analysis, which makes it use-
ful for exploratory investigations. As shown in Fig.  1, a 
complete plant metabolomics work flow is composed of 
experimental design, sample collection, sample prepara-
tion, instrumental analysis, data processing and analy-
sis, statistical modeling and expert interpretation etc. 
Although the advances in instrument have been achieved 
in the past decades, it still remains immense challenges 
for constructing a more efficient and automated plant 
metabolomics work flow both practically and theoreti-
cally. In this review, we focus primarily on the challenges 
and advancements associated with data processing and 
analysis section in the plant metabolomics work flow, 
with a specific attention on tensor methods.

Chromatography coupled with mass spectroscopy 
and Nuclear Magnetic Resonance (NMR) are the main 
types of instruments that are widely used for perform-
ing plant metabolomics analysis. NMR is a well-known 
technology that is capable of producing robust, repro-
ducible and structural metabolite information when 

Fig. 1   A typical plant metabolomics work flow
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used in metabolomics studies [7]. Compared to NMR, 
chromatography coupled with mass spectroscopy is 
more advantageous in the cheaper cost, higher sensitiv-
ity and lower learning curve [8]. Gas chromatography 
MS (GC-MS) and liquid chromatography MS (LC-MS) 
are two types of chromatography coupled mass spec-
troscopy instruments. The combination of chromatog-
raphy with strong separation ability and MS with high 
sensitivity identification advantages provides powerful 
metabolomics analysis platforms for many plant science 
investigations. Chromatography can be also coupled with 
diode array detector (DAD), which is also frequently 
used in many plant metabolomics applications. The 
aforementioned chromatography-based plant metabo-
lomics instruments generate massive and exceptionally 
complex data for the analysts. Thousands of compounds 
can exist in a small and short metabolites spectrum. Not 
only the amount of the data increases dramatically, the 
dimensionality of data also significantly increases. For 
example, in the metabolomics analysis with GC-MS, the 
resulted data with a number of runs are organized in a 
three-way structure, so-called tensor structure. The three 
dimensions of GC-MS tensor data are named as elution 
profiles, mass spectra and sample concentrations respec-
tively, as shown in Fig.  2. Compared to the data matrix 
containing one sample GC-MS data, containing only 
mass spectra and elution profiles information, the three-
way GC-MS data is more complex. It is challenging to 
fully and efficiently extract metabolites information from 
such multi-way data [9]. In addition, the plant metabolo-
mics data analysis are also facing many other analytical 

challenges that cannot be overlooked, including but not 
limited to co-eluted peaks, low intensity peaks, baseline 
drift, background effect, retention time shift, skewed 
peaks etc. [10]. In recent years, the multi-dimensional 
chromatographic MS so-called GC-GC-MS or LC-LC-
MS has gained more and more attention from analytical 
plant scientists. Multi-chromatogram coupled with MS is 
deemed to have stronger metabolites identification capa-
bility due to its advantages in higher peak capacity and 
resolving power. However, it is necessary to mention that 
the produced data from multi-chromatogram MS is also 
far more complex compared to the conventional GC-MS 
or LC-MS data, because the dimensionality of the data 
increases. Therefore, one of the challenges associated 
with plant metabolomics analysis stems from how to 
handle the large metabolomics data and extract the valu-
able information from it. Advanced chemometrics tool 
and statistical modeling methods are urgently required in 
plant metabolomics analysis.

In recent years, tensor methods, also known as multi-
way models, has been proven to be a promising high-
order chemometrics tool for solving or alleviating the 
practical and challenges of complex metabolomics 
data analysis [11, 12]. Tensor modeling is the emerging 
topic in chemometrics, as well as in many other fields 
including signal processing [13], biomedical informat-
ics [14], machine learning [15], environmental analytics 
[16] etc. By decomposing the multi-way array into a set 
of high-order components, the tensor models are capa-
ble of extracting the latent information and structure 
from the complex multi-way data. Unlike the two-way 

Fig. 2  Data structure in plant metabolomics studies, taking an example of GC-MS data: (a)one sample GC-MS data-matrix. (b)multi-sample GC-MS 
data-tensor
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chemometrics tools such as PCA, tensor models are 
used to analyze the multi-way data without destroying 
the intrinsic multi-way structure of the data and some of 
the tensor models are able to yield unique solutions with 
chemical meaning [17]. Compared to the two-way statis-
tical methods, tensor methods are able to make predic-
tions more robust in the presence of serious noise [13]. 
In the context of chromatography-mass spectroscopy 
based plant metabolomics, tensor models have been 
validated to greatly simply the analysis by eliminating the 
need for multiple algorithms and avoiding the cumber-
some human-dependent data preprocessing [8]. Tensor 
models represented by PARAFAC2 shows great poten-
tial for solving the analytical challenges of plant metabo-
lomics data analysis and establishing an automated and 
intelligent plant metabolomics work flow [10, 11, 18]. 
Therefore, tensor methods open new ways for turning 
the massive plant metabolomics data into valuable infor-
mation and investigating meaningful solutions to a wide 
variety of plant metabolomics problems.

The rest of the review is organized as follows. Sec-
tion  2 presents the widely used tensor models in plant 
metabolomics data analysis and discusses the advances 
and limitations of various tensor models. In Section 3, we 
briefly introduce the recent application of tensor mod-
els in plant metabolomics investigations and summarize 
the plant metabolomics problems that tensor models are 
used to solve. In the end, we conclude the review and 
discuss some future perspectives on plant metabolomics 
data analysis coupled with tensor modeling methods.

Tensor models
PARAFAC
PARAFAC is an important tensor model for analyzing 
multi-way data with a multilinear structure. It was first 
proposed by Harshman [19], a psychometrician from 
Canada. In the same year, Carrol et al. proposed the same 
tensor model but with a different name called CANDE-
COMP [20]. The three-way PARAFAC model is generally 
written in matrix notations as follows:

	 Xk = ADk(B)T + Ek, k = 1, . . . , K (1)

where Xk  is the kth  submatrix (frontal slab) of the 
I × J ×K  third-order tensor X_ , e.g., it can be the kth  
sample run in LC-MS metabolomics experimental analy-
sis. The matrix Ek  denotes the error array with a dimen-
sion of I × J . For a F -component PARAFAC model on 
aligned LC-MS data, the matrix A (I × F ) may store the 
mass spectra, and the matrix B (J × F ) may contain 
the elution profile. The Dk  (F × F ) is a diagonal matrix 
where the kth  row vector of matrix C  (K × F ) is a diag-
onal vector. The elements on the diagonal vector denote 
the concentration of the fth  resolved chemical in the 

sample k . Besides the above notation, PARAFAC model 
can also be written in the format of Kronecker product:

	
X(I×JK) =

F∑

f=1

af ⊗ (cf
T ⊗ bf

T ) +E(I×JK), f = 1, . . . , F (2)

where af  is the fth  column vector of matrix A, bf and cf  
are defined in the same manner. X(I×JK) is the unfolded 
matrix of third-order tensor X_  (along with the second 
mode) and E(I×JK) is the residual array with a dimension 
of I × JK .  ⊗  is Kronecker product. A graphical illus-
tration of PARAFAC model is presented on Fig. 3.

It is vital to note that the PARAFAC model is multi-
linear. In other words, if the underlying profiles change 
shape or shift in one mode across another mode, then 
such data will violate the multi-linearity assumption of 
PARAFAC model, thus applying PARAFAC model will 
not lead to chemically meaningful tensor solution. When 
using PARAFAC model on large scale GC-MS or LC-MS 
data, the data has to be preprocessed or aligned. This is 
because chromatographic data is always shifted run by 
run and such shift violates the multilinear assumption of 
PARAFAC model. Under mild condition [21], it is proved 
that the solution of the PARAFAC model is unique, 
which is one of the significant merits of this model. The 
alternating least squares (ALS) algorithm is the most 
widely used algorithm for fitting a PARAFAC model. 
In ALS, the subset of the estimated loading matrices is 
successively updated, and this procedure is iteratively 
repeated until the algorithm reaches a convergence cri-
terion. Since the principles of ALS method are simple to 
understand, and many useful constraints, such as non-
negativity and unimodality, are easy to impose within the 
algorithm, PARAFAC-ALS has been one of the most cus-
tomary algorithms so far. However, many problems exist 
in alternating algorithms. For instance, the local minima 
problem is a non-trivial numerical and practical chal-
lenge [22]. Moreover, the efficiency of PARAFAC-ALS 
algorithm is practically low and it is also difficult to con-
verge in the case of swamps, especially for larger datasets.

In recent years, some potential solutions have been 
proposed to attack the problems of alternating based 
PARAFAC algorithm. Zeng et al. proposed an alter-
nating minimization-based method for incremental 
PARAFAC decomposition [23], and it showcased great 
advantages in computational time. De et al. developed an 
L-BFGS based accelerator for ALS and applied it on ten-
sor decomposition [24], their results showed there were 
substantial improvements in terms of convergence time 
over the available methods. The principles of random-
ization have also been successfully extended and applied 
to alternating based PARAFAC algorithm. For example, 
Vervliet et al. developed a PARAFAC-ALS tensor decom-
position algorithm by applying a randomized block 
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sampling method [25]. The test results indicated the new 
algorithm achieved computational savings and attained 
near-optimal accuracy, even though it may be slow in the 
case of ill-conditioned situations. Erichsion et al. pro-
posed a randomized algorithm [26]. In their method, the 
random projections and power iterations were employed 
to yield a compressed tensor and then the ALS procedure 
was applied to the compressed tensor. They concluded 
that the new algorithm significantly reduced the com-
putational cost of CP tensor decomposition. Another 
group of algorithms for fitting the PARAFAC model is 
the derivative based algorithm. Instead of calculating the 
least square solution and successively updating subsets 
of the estimated matrices in each step, derivative based 
algorithms update all the parameters in each step by cal-
culating the Jacobian and approximate Hessian matrix. 
The representative algorithms are PMF3 [27], damped 
Gauss Newton [28], low complexity damped Gauss New-
ton [29], inexact generalized Gauss-Newton method [30] 
and weighted Krylov-Levenberg-Marquardt method [31]. 
As one would expect, these derivative based algorithms 
are beneficial for the convergence in the case of swamp 
or ill-conditioned data, owing to their second-order 
advantages and the super-linearity in the vicinity of the 
solution [32]. However, it is difficult and computationally 
expensive to construct and calculate the big Hessian or 
approximate Hessian for large datasets. Moreover, it may 
take more iterations to converge if the initialization is not 
near to the optimal solution.

PARAFAC2
PARAFAC2 is a useful method for complex high-order 
tensor analysis. The proposal of PARAFAC2 model can 
be dated back to the work of Harshman [33]. The PARA-
FAC2 model is generally written as follows:

	Xk = ADk(Bk)
T + Ek, k = 1, . . . , K

(
s.t.BT

kBk = H
)
(3)

The definitions of the symbols in Eq.  3 are the same as 
those in PARAFAC model. The only difference is that 
each sample now has an individual loading matrix Bk  
instead of the same B for all samples, and the matrices 
Bk  of the shifted mode are constrained to BT

kBk = H 
meaning that the profiles of the shifted mode for different 
samples share the same cross product. In case of GC-MS 
plant metabolomics data, the evolving Bk  character-
izes the shifted elution profiles for each sample at each 
run. Together with PARAFAC model, the graphical illus-
tration of PARAFAC2 model is shown on Fig.  3. Kiers 
et al. developed a direct ALS algorithm which is popu-
lar nowadays for fitting PARAFAC2 model [34]. In the 
direct ALS algorithm, the matrix Bk  is equally replaced 
by the product of a J × F  orthogonal matrix Pk  and a 
F × F  common matrix U , where F  is the number of 

components in the model and J  is the dimension of the 
shifted mode. PARAFAC2 model is inherently not a strict 
multi-linear model. Specifically, it does not assume the 
profiles in a specific mode to keep constant across the 
samples/slabs in another mode in a third-order tensor. 
Instead, PARAFAC2 only requires the cross product of 
the profiles to keep constant across the samples/slabs in 
another mode [22]. In plant metabolomics analysis, data 
is most likely not strictly multi-linear for many reasons 
such as the artifacts, instrument performance, samples 
status and other environmental factors. By relaxing the 
strict multi-linearity, the PARAFAC2 model works well 
for non-strict-multilinear high-order tensor data such as 
the retention time shifted three-way GC-MS data.

Similar to the PARAFAC model, the solutions of the 
PARAFAC2 model are also unique under certain condi-
tions [35]. The uniqueness property of PARAFAC2 model 
is very useful in practice, for example, when PARAFAC2 
is applied in curve resolution problem, the chemical 
profiles of different compounds can be uniquely deter-
mined and resolved due to the uniqueness of PARAFAC2 
model. This significantly increases the interpretability of 
the model results and avoids the unnecessary ambiguity.

The PARAFAC2 model is advantageous in many other 
aspects. For example, compared to the two-way methods 
(e.g., MCR), the PARAFAC2 fully explores the multi-way 
structure of the high-order shifted tensor and yields the 
model with unique solutions and more interpretability. 
Unlike PARAFAC model, the PARAFAC2 model does 
not need the cumbersome preprocessing and alignment 
procedure when analyzing the shifted multi-way GC-MS 
data [18]. The rotation freedom problem also does not 
exist in PARAFAC2 model [34]. Moreover, the PARA-
FAC2 model is practically less sensitive to the shape 
changes of the factor’s profiles than traditional methods. 
The invariant cross product requirement in the PARA-
FAC2 model inherently means the angles of factors pro-
files in the shifted mode do not change. Therefore, even 
though the shapes of the factor profiles change a little 
bit, the data can still be properly analyzed by PARAFAC2 
model as long as the angles of the factor’s profiles do not 
change too much. The popularly used direct PARAFAC2-
ALS algorithm can be easily extended to N-way cases, 
which is potentially useful for solving a wide range of 
complex applications such as GC-GC-MS or LC-LC-MS 
plant metabolomics data.

There are still some limitations in PARAFAC2 mod-
eling when it is used for complex plant metabolomics 
data analysis. The computation of PARAFAC2 model is 
inherently an NP-hard problem as it is for other tensor 
decomposition problems [36]. It means the solutions to 
the hardest problems in NP can be found by answer-
ing questions about high-order tensor decomposition 
problem. One of the obvious difficulties of the NP-hard 
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problem is the occurrence of local minima solutions. A 
local minimum solution of PARAFAC2 model refers to 
the inferior solution of the global optimization problem. 
In other words, the loss function error associated with 
the local minimum PARAFAC2 model is higher than that 
associated with the global minimum PARAFAC2 model. 
The most widely used direct PARAFAC2-ALS algorithm 
suffers the local minima problem to an extent that cannot 
be ignored and it has been reported in several applica-
tions papers [37, 38]. In some cases, it might happen that 
the difference of loss function errors between local mini-
mum PARAFAC2 model and global minimum PARA-
FAC2 model is extremely small, however, the resolved 
factors profiles of PARAFAC2 models may still have a 
significant difference. Overlooking the local minima issue 
may cause wrong and ambiguous expert analysis when 
the PARAFAC2 model is applied on plant metabolo-
mics data analysis. Even though the widely used PARA-
FAC2-ALS algorithm is easy to implement and simple to 
understand, it still has several numerical drawbacks. For 
example, the efficiency of popular PARAFAC2-ALS algo-
rithm is generally not satisfactory when it is used for ana-
lyzing large multi-way plant metabolomics datasets. This 
is caused not only by the property of the ALS method 
(only a subset of the estimated variables is changed at one 
time), but also due to the slow linear convergence rate of 
PARAFAC2-ALS algorithm. Moreover, the two-factor 
degeneracy [39] problems have a possibility to occur in 
the high rank cases when the PARAFAC2-ALS algorithm 
is employed.

Recently, there has been some work that has been 
dedicated to tackling the numerical issue of PARAFAC2. 
Cohen et al. proposed a flexible coupling Non-negativity 
PARAFAC2 model by relaxing the constraints of the nor-
mal PARAFAC2 model and adding the regularization 
term to the normal loss function of PARAFAC2 model 
[40]. More recently, Roald et al. developed an algorithm 
for fitting PARAFAC2 model based on the alternating 
direction method of multipliers (ADMM) framework 
[41]. In this method, they added the regularization terms 
on all the modes in PARAFAC2 model by implementing a 
splitting scheme on the PARAFAC2 problems. However, 
the effectiveness of these regularized PARAFAC2 algo-
rithms still needs to be widely tested on different types of 
multi-way plant metabolomics datasets and the quality of 
the solutions of these algorithms has to be investigated. 
Additionally, the coupling effects of these regularized 
PARAFAC2 algorithms with other numerical optimiza-
tion techniques (e.g., acceleration techniques) frequently 
used in tensor decomposition remain further investiga-
tions. Faster PARAFAC2 algorithms have been developed 
in the work of Huiwen et al. [42]. In their work, PARA-
FAC2 algorithm is significantly accelerated by perform-
ing different types of extrapolation enhancements on the 

estimated factor matrices. The proposed algorithms are 
recommended to be used for large plant metabolomics 
data analysis. In order to cope with the local minima 
issue, new PARAFAC2 algorithms have also been pro-
posed [22]. The new algorithms are validated to be useful 
for avoiding local minima in the context of PARAFAC2 
decomposition.

Tensor based data fusion
Data fusion is defined as the joint analysis of multiple 
inter-related datasets that provide complementary views 
of the same phenomenon [43]. The integration of multi-
modal datasets coming from various sources may have 
the potential of enhancing the systematic understand-
ing, knowledge discovery and information extraction 
compared to using individual dataset. For example, in 
plant metabolomics analysis, data measured from NMR 
and mass spectroscopy-based instrument is complemen-
tary, and the joint analysis of the complementary datas-
ets is capable of enhancing the chemical discovery and 
metabolites identification [44]. In chemometrics, the 
similar concept was first introduced by Smilde et al. [45]. 
In tensor-based data fusion, the tensors and the matrices 
are coupled in the specific modes, and these datasets are 
decomposed jointly and share the same latent space. The 
most popular model for performing tensor-based data 
fusion is the coupled matrix tensor factorization (CMTF) 
model [46]. In CMTF model, tensor and matrix are 
jointly decomposed into shared factor and non-shared 
factors. The uniqueness property of the normal tensor 
decomposition still remains in CMTF [46]. The ALS algo-
rithm can be employed to calculate CMTF model [47]. In 
this case, we need to concatenate the two sets of data. 
In the same manner as in PARAFAC-ALS, all but one of 
the matrices that we are seeking to estimate is fixed, then 
a normal ALS procedure can be continued until reach-
ing convergence. The process of a simple tensor coupled 
matrix data fusion modeling is presented on Fig. 3.

New advances in tensor-based data fusion algorithms 
have been achieved over the years. Evrim et al. proposed 
the so-called advanced CMTF(ACMTF) model [48]. 
The ACMTF models was capable of decomposing both 
shared and unshared components in the coupled factor(s) 
and these components can be automatically determined. 
Mosayebi et al. proposed a new model called correlated 
CMTF (CCMTF) where the correlation between the 
shared components of two dataset in the common mode 
are maximized [49]. The CCMTF model is deemed to 
alleviate the strict assumption of identical shared compo-
nents in ACMTF. More recently, a flexible framework for 
tensor-based data fusion has been proposed by Evrim et 
al. [50]. Owing to this new framework, a variety of model 
constraints, loss functions and couplings are possibly to 
be added into the tensor data fusion models in a flexible 
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way. In addition to the tensor coupled matrix studies, 
tensor coupled tensor algorithm has also been investi-
gated in recent years. For example, Chatzichristos et al. 
proposed double coupled tensor decompositions and 
explored soft and flexible coupling approaches to imple-
ment the multi-tensor data fusion modeling [51]. Many 
advancements have been made over the years, while it 
still remains challenges in different aspects of tensor-
based data fusion. The existence of missing data, het-
erogeneity of data variables, different types of noise and 
artifacts, and data uncertainties [43] are all critical prob-
lems that we have to face and cope with. All in all, the 
advancements in tensor-based data fusion methods will 
definitely enable us to better understand and gain new 
insights from complex multi-modal/multi-block plant 
metabolomics datasets.

Other tensor models
Apart from the widely used PARAFAC, PARAFAC2 
and tensor-based data fusion models, there are some 
other tensor models being developed and used for plant 
metabolomics applications. Some of the tensor models 
are developed as a variant of an existed chemometrics 
model. For example, PARAFAC2×N model is a variant of 
PARAFAC2 model [52]. It is proposed for high-order ten-
sor data with several shift modes in the data such as GC-
GC-MS data. In GC-GC-MS data, it has two modes with 

retention time shift so that the normal PARAFAC2 model 
cannot model it. In PARAFAC2×N model, an additional 
coupling constraint is added to flexible coupling PARA-
FAC2, and this constraint restricts the descent of the 
extracted mass spectra calculated from models describ-
ing two modes retention time shift. N-way PLS is another 
typical tensor model which is extended from the conven-
tional two-way PLS model [53]. Inherently, N-way PLS is 
a regression model that combines the tri-linear decom-
position with the Partial Least Square (PLS) model, and 
it works in a manner that tries to find the weight matrices 
that maximize the covariance between two score matri-
ces. Proper application of N-way PLS is able to increase 
the prediction performance, yield robust results and 
improve the interpretability of the model [53].

Many of the tensor models are designed for a specific 
analytical and numerical purpose. PARAllel profiles 
with LINear Dependencies (PARALIND) is one of such 
models that is established for analyzing the multi-lin-
ear tensor data with linear dependency factors [54]. By 
introducing and capitalizing on the dependency matrix 
defining the inner relationship between the full rank 
and the rank-deficiency components, the linear depen-
dent factors profiles can be successfully resolved by the 
PARALIND model. The advantages of PARALIND model 
make it useful for a wide variety of complex applications. 
For example, it is possible to employ PARALIND model 

Fig. 3  Graphical illustration of different tensor models in plant metabolomics investigations: (a)PARAFAC model. (b) PARAFAC2 model. (C) Tensor based 
data fusion
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to resolve the co-eluted peaks in the aligned plant metab-
olomics GC-MS or LC-MS data. It has been shown that 
PARALIND can also deal with the linear dependency 
of the factor profiles in more than one mode [54]. More 
recently, a new tensor model called PARAFAC Applied to 
Shift Invariant Amplitude Spectra (PARASIAS) has been 
proposed for analyzing shifted multi-way data [55]. The 
PARASIAS model accelerates the complex shifted tensor 
analysis by combining spectral transformation and the 
PARAFAC modeling, which provides new insights on the 
future investigations for efficient tensor models. Based on 
PARASIAS model, Poul et al. established a shift-invariant 
tri-linearity model (SIT) for improving chromatography 
coupled mass spectrometry data analysis [56]. By add-
ing a flexible tri-linearity implementation into the model, 
SIT model is able to further accelerate the shifted tensor 
decomposition and make the implementation of con-
straints on all shifted modes possible. The new progress 
in tensor models provides new tools and methods for the 
analysis of plant metabolomics data, which will greatly 
promote the further development of plant metabolomics 
research.

Applications of tensor models in plant 
metabolomics
Plant genetic mutant and phenotyping
Chromatographic metabolomics has been widely used 
to perform plants genetic mutant and phenotyping stud-
ies. As a powerful tool, tensor methods play an impor-
tant role in understanding the importance of metabolites 
traits and associated genetic factors. Khakimov et al. 
explored the seed phenotyping of barley by using PARA-
FAC2 model on multi-way metabolomics data [57]. The 
relations between metabolite patterns of barley seed 
and genotype and growth temperature were revealed. 
For example, they found that the increase in proteins 
with rich essential amino acid lysine is caused by the 
mutation gene in lys3 barley seed. Similar research has 
been conducted on other plants. Porter et al. investi-
gated the metabolites related to the biosynthetic path-
ways of indole-3-acetic acid in maize seedling [58]. They 
employed PARAFAC to model and reveal the metabolite 
pattern of both mutant-type and wild-type maize seed-
lings. Another study on cassava focused on identifying 
the genes regulating the production of specific metabo-
lites by using tensor methods [59]. Specifically, they iden-
tified a gene as a catalyst in the synthesis of Linamarin 
metabolite in cassava by combining PARAFAC modeling 
and LARS regression. The results were critical for further 
understanding the systematic relation between genes and 
metabolites controlling in cassava plant.

Tensor methods provide new insights for metabolites 
characterization-based plant phenotyping study. PARA-
FAC2 modeling coupled with PLS-DA was capable of 

achieving high precision classification of the wild-type 
and genetically engineered poplars with a success rate 
more than 99% [60]. By characterizing the small metabo-
lites and its tiny change, PARAFAC2 based method was 
recommended to be an efficient and promising way for 
poplars classification. Moreover, the practical applica-
tions indicate that tensor methods have strong ability 
and advantages in plant metabolites characterization. 
PARAFAC based extraction protocols were validated to 
extract greater varieties and amounts of metabolites from 
Erythrina speciosa Andrews leaves compared to the tra-
ditional methods [61]. The new method was expected to 
characterize the chemical fingerprints with high quality 
in natural products. Modeling efficiency is another con-
cern regarding to large scale plant metabolites character-
ization. The application of PARASIAS model on barley 
data indicates that efficient characterization of large-
scale plant metabolomics data is possible [55]. This new 
tensor tool will greatly contribute to the metabolome-
wide analysis and the integration analysis of large multi-
omics data. Recently, specific analytical challenge of plant 
metabolites characterization has drawn plant scientist’s 
attention. For example, a non-negativity PARAFAC2 
based work flow has been designed and applied on plant 
tissue samples in order to improve the resolution of co-
eluted peaks in plant metabolomics analysis [62]. The 
new proposal was validated to be a favorable choice for 
characterizing complex co-eluted metabolites peaks.

Plant diseases and resistance
Plant disease and resistance are the eternal research 
themes of plant science. Investigating plant disease from 
a metabolomics point of view is important for under-
standing the complex mechanism of plant disease. 
Hantao et al. analyzed the volatile metabolites of hybrids 
of Eucalyptus globulus to determine the Eucalyptus sam-
ples susceptibility to rust disease [63]. They combined 
PARAFAC model and Fisher ration analysis to investi-
gate the correlation between chromatographic chemical 
profiles and resistance against Eucalyptus rust. From this, 
the susceptible plants were discriminated successfully. In 
another study, a PARAFAC and LC-MS based plant dis-
ease diagnosis method for Eucalyptus globulus was devel-
oped [64]. Specifically, they performed the distinction of 
healthy samples and non-healthy samples and identified 
the metabolites related to the biotic stress by using the 
PARAFAC scores and loadings. The new method was 
deemed to provide new insights into the analysis of plant 
disease and defense mechanism. The control of plant dis-
eases is very important for plant growth. Tensor based 
metabolomics technology can be useful to this field. As 
an example, Bordagaray et al. used PARALIND model to 
resolve metabolites with high similarity spectra from the 
mixture of plant fungicides [65]. The complex chemicals 
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in the mixture were successfully resolved, which was very 
important for understanding the composition of plant 
fungicides.

The investigations on plant resistance against to insects 
is vital for protecting plant growth. Tensor methods 
have been applied in plant metabolomics to help under-
stand the plant resistance mechanism. Khakimov et al. 
employed PARAFAC2 model on the LC-MS metabolo-
mics data of Barbarea vulgaris plants [66]. By combin-
ing tensor method with PLS and correlation analysis, 
five unknown saponin-like compounds correlated with 
the resistance of plants against to insect herbivore were 
successfully found, and these compounds have not been 
detected using traditional chemometrics tools before. 
Similar research can be found in the recent work. Gon-
zalez et al. used PARAFAC2 modeling on GC-MS 
metabolomics data to investigate the effect of endophytic 
colonization by the entomopathogenic fungus Beauveria 
bassiana on melon and cotton plants [67]. By doing so, 
they systematically explored the plant defense responses 
to insect-pathogenic fungi which plays a key role in 
integrated pest management systems. Jan et al. pre-
sented that the amino acid residues at position 121 and 
735 accounted for the production ratio of the resistance 
chemicals against to insect herbivores [68]. PARAFAC2 
modeling on GC-MS barbarea vulgaris leaves data was 
performed in the study from which the role of enzymes 
as important mediators of metabolic plasticity through-
out plant evolution were revealed. Hence it is evident 
from the above studies that the tensor methods-based 
metabolomics technology is currently taking effects on 
investigating the resistance of plants against to insects 
and the plant growth protection.

Plant pharmacology and nutrition
The pharmacological components analysis of plants is an 
important topic that cannot be ignored in plant science 
research, as well as in plant industry. However, due to the 
complexity of medicinal and edible plant systems, accu-
rate characterization of their pharmacological compo-
nents is not straightforward. Metabolomics technology 
provides an inspiring solution for the analysis and qual-
ity assessment of plant pharmacological components. In 
particular, the coupling of tensor methods and metabo-
lomics technology further promotes the exploration on 
this issue. Schmidt et al. applied PARAFAC model on the 
aligned HPLC metabolomics data generated from Hyper-
icum perforatum used for producing herbal preparations 
[69]. The differences in composition between individuals 
were successfully detected. The established workflow pro-
vided a tool for unsupervised and unbiased assessment of 
the composition of herbal preparations, being important 
for evaluation of plant pharmacological activity. Recently, 
Turova et al. have also proposed a PARAFAC-based 

algorithm for herbal extracts identification [70]. The pro-
posed method was applied on HPLC-MS data generated 
from a variety of plants extracts such as Glycyrrhiza gla-
bra and Panax ginseng dried root. The new protocol was 
validated to be capable of robustly identifying the criti-
cal metabolites composition and thus being a robust tool 
for quality control of plant pharmacological components. 
A variety of similar research on this topic can be found 
in the recent work [71–73]. These studies provide new 
tensor insights with a forward-looking perspective for 
robust, reliable and rapid pharmacological component 
analysis and quality evaluation of plants.

The coupling of tensor modeling and nutrient compo-
sition analysis can be observed from the plant metabo-
lomics literature. Khakimov et al. conducted a detailed 
nutrient value analysis of the main northern European 
cereal crop plants by comparing the metabolites profiles 
of different cereal crop plants [74]. Compared to the tra-
ditional tools, the proposed PARAFAC2 based protocol 
was reported to provide an efficient and high throughput 
analysis of the cereal metabolites and improve the detec-
tion of conjugated phenolics. For a systematic knowledge 
and applications about cereal metabolomics and nutri-
ent composition analysis, we refer to the review [75]. The 
nutrition analysis of plant and its related issues in the 
context of metabolomics is gaining more and more atten-
tion from scientific community [76, 77]. Even though ten-
sor-based method is taking its power in plant nutrients 
composition analysis, its potential is far from reached 
and more opportunities for the wide applications are 
expected in the future.

Plant products characterization and evaluation
Plants provide values to humans and society in the form 
of plant products in many cases. Along the years, the 
study of plant products has attracted increasing inter-
ests from both plant scientists and analytical scien-
tists. Favilla et al. employed the discriminant version of 
N-way PLS-DA model (NPLS-DA) and Variable Impor-
tance in Projection (VIP) method to efficiently evaluate 
the authenticity of extra virgin olive oils [78]. The ten-
sor method was validated to provide a favorable tool for 
robust olive oils assessment. Silvestri et al. used PARA-
FAC based method to jointly analyze the HPLC, NMR 
and fluorescence datasets of Lambrusco grape wine sam-
ples [79]. A data fusion protocol was established for well 
characterizing the phenolic metabolites of Lambrusco 
grape wine. Schenker et al. optimized the tensor-based 
data fusion method CMTF and used it to analyze joint 
data from multiple metabolomics platform such as NMR 
and LC-MS, their results indicated that tensor-based 
data fusion model enhanced the metabolites discov-
ery from complex plant products mixture [50]. Similar 
research on tensor-based data fusion applications can be 
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observed from other work [44]. Efficient and robust char-
acterization of large-scale metabolites of plant products 
is important for fulfilling the needs of automated plant 
production process. Recently, Schneide et al. has applied 
SIT model on GC-MS apple wine data [56]. The tensor 
method has a pretty high efficiency for modeling large 
scale GC-MS plant metabolomics data. Compared to the 
state-of-the-art curve resolution method, the SIT model 
was 60 times faster in the best case. SIT model will defi-
nitely advance the automated online metabolites analysis 
of plant products in the future. As expected, PARAFAC 
and PARAFAC2 based plant metabolomics methods 
are very popular in the quality evaluation and classifica-
tion analysis of plant products. Their applications cover 

a wide variety of plant products such as corn oil, coffee, 
olive oil and grape wine etc. [80–85]. Tensor methods 
have been verified on these applications for being able to 
provide clearer identification and assignments of metab-
olites, higher quality chromatographic fingerprints, more 
robust modeling results and more reliable quality assess-
ments compared to the traditional chemometrics tools. 
The details of typical applications of various tensor mod-
els in plant metabolomics analysis are listed in Table 1.

Conclusions
The rapid development of metabolomics technology 
has profoundly affected the field of plant science. The 
advances in chemometrics provide the key tools for data 

Table 1  The typical applications of tensor models in plant metabolomics investigations
Category Plants Tensor models Instruments Analytical purpose Refer-

ence
Plant genetic 
mutant and 
phenotyping

Barley PARAFAC2 GC-MS improve metabolites identification  [22]

Tobacco PARAFAC2 GC-MS enhance metabolites resolution  [38]

Barley PARASIAS GC-MS plant phenotyping and metabolites 
characterization

 [55]

Barley PARAFAC2 GC-MS phenotype, genetic and environmental analysis  [57]

Maize PARAFAC 2D-LC-DAD genetic mutant and metabolites analysis  [58]

Cassava PARAFAC LC-MS identify genes for regulating metabolites  [59]

Poplars PARAFAC2 Py-GC-MS plant phenotyping and classification  [60]

Erythrina speciosa Andrews 
leaves

PARAFAC HPLC-DAD plant phenotyping and metabolites 
characterization

 [61]

Lupinus angustifolius Non-negativity 
PARAFAC2

UHPLC-HRMSE metabolites characterization  [62]

Plant diseases 
and resistance

Eucalyptus globulus PARAFAC GC-GC-qMS plant disease susceptibility  [63]

Eucalyptus globulus PARAFAC LC-MS plant disease diagnosis  [64]

Plant related products PARALIND HPLC-DAD fungicides composition  [65]

Barbarea vulgaris PARAFAC2 LC-MS plant resistance analysis  [66]

Melon and cotton PARAFAC2 GC-MS plant resistance analysis  [67]

Barbararea vulgaris PARAFAC2 GC-MS plant resistance analysis  [68]

Plant pharma-
cology and 
nutrition

Hypericum perforatum PARAFAC HPLC-DAD herbal preparations composition analysis  [69]

Glycyrrhiza glabra and Panax 
ginseng dried root etc.

PARAFAC HPLC-MS quality control of plant pharmacological 
components

 [70]

Quinoa PARAFAC2 GC-MS and LC-MS pharmacological components analysis  [71]

Cyperi rhizoma PARAFAC LC-MS analysis on active ingredients in Chinese herbs  [72]

Teucrium polium PARAFAC GC-MS composition characterization  [73]

Cereal crop PARAFAC2 GC-MS nutrient value analysis  [74]

Tropical fruits PARAFAC2 GC-MS nutrition and quality evaluation  [77]

Plant products 
characterization 
and evaluation

Apple wine PARAFAC2 GC-MS enhance metabolites resolution  [42]

Apple wine SIT GC-MS accelerate the metabolites resolution  [56]

Olive oils NPLS-DA GC-MS authentication analysis  [78]

Lambrusco grape wine PARAFAC HPLC-MS based data fusion classification  [79]

Mixture CMTF LC-MS enhance metabolites discovery  [50]

Corn oil PARAFAC and 
PARAFAC2

LC-LC-MS enhance metabolites discovery  [80]

Grape wine PARAFAC2 HS-SPME-GC-MS regionality and quality analysis  [81]

Olive oil PARAFAC2 GC-MS quality classification  [82]

Cottonseed oils PARAFAC2 GC-MS quality classification  [83]

Grape wine PARAFAC2 GC-MS quality classification  [84]

Coffee PARAFAC HPLC-DAD metabolites identification  [85]
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analysis and processing in plant metabolomics research. 
Among them, advanced chemometrics tools represented 
by tensor analysis methods have undoubtedly further 
promoted the automated and intelligent process of plant 
metabolomics analysis. Although the tensor analysis 
method has been widely used in plant metabolomics 
research, its potential is far from being reached. The syn-
ergy between tensor analysis methods and high-through-
put metabolomics data analysis summarized in this 
review is just the tip of the iceberg. In the future, there 
will be more opportunities for tensor-based advanced 
chemometrics methods in solving complex plant metab-
olomic analysis problems. More advanced tensor che-
mometrics tools will continue to emerge in order to 
continuously adapt to the increasing needs of plant 
metabolomics research during its evolution process.
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