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Abstract 

Background  The metrics for assessing the yield of crops in the field include the number of ears per unit area, 
the grain number per ear, and the thousand-grain weight. Typically, the ear number per unit area contributes 
the most to the yield. However, calculation of the ear number tends to rely on traditional manual counting, which 
is inefficient, labour intensive, inaccurate, and lacking in objectivity. In this study, two novel extraction algorithms 
for the estimation of the wheat ear number were developed based on the use of terrestrial laser scanning (TLS) 
in conjunction with the density-based spatial clustering (DBSC) algorithm based on the normal and the voxel-based 
regional growth (VBRG) algorithm. The DBSC involves two steps: (1) segmentation of the point clouds using differ-
ences in the normal vectors and (2) clustering of the segmented point clouds using a density clustering algorithm 
to calculate the ear number. The VBRG involves three steps: (1) voxelization of the point clouds, (2) construction 
of the topological relationships between the voxels as a connected region using the k-dimensional tree, and (3) 
detection of the wheat ears in the connected areas using a regional growth algorithm.

Results  The results demonstrated that DBSC and VBRG were promising in estimating the number of ears for dif-
ferent cultivars, planting densities, N fertilization rates, and growth stages of wheat (RMSE = 76 ~ 114 ears/m2, 
rRMSE = 18.62 ~ 27.96%, r = 0.76 ~ 0.84). Comparing the performance of the two algorithms, the overall accuracy 
of the DBSC (RMSE = 76 ears/m2, rRMSE = 18.62%, r = 0.84) was better than that of the VBRG (RMSE = 114 ears/m2, 
rRMSE = 27.96%, r = 0.76). It was found that with the DBSC, the calculation in points as units permitted more detailed 
information to be retained, and this method was more suitable for estimation of the wheat ear number in the field.

Conclusions  The algorithms adopted in this study provide new approaches for non-destructive measurement 
and efficient acquisition of the ear number in the assessment of the wheat yield phenotype.

Keywords  Ear number, LiDAR, Density-based spatial clustering based on the normal (DBSC), Voxel-based regional 
growth (VBRG)

Introduction
Wheat is the largest cereal crop under cultivation and is 
one of the three major food crops in the world. Hence, it 
plays a very important role in agricultural production [1]. 
Accurate and rapid monitoring of the growth of wheat is 
of great importance for predicting crop yield. Three key 
metrics for assessing wheat yield are the ear number per 
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unit area, the grain number per ear, and the thousand-
grain weight [2]. In particular, the ear number per unit 
area contributes the most to yield [3]. Increasing the ear 
number is an effective means to tap the yield potential 
of wheat and increase the yield. Therefore, a real-time, 
accurate and nondestructive estimation of the wheat ear 
number in the field can provide a scientific basis for pre-
dicting the yield of wheat and selecting wheat cultivars 
with high and stable yields. At present, remote sensing 
based on RGB images is widely used for the monitoring 
of wheat ear numbers [4]. Zhou, et al. [5] combined high-
resolution, large-scale RGB images and multispectral 
images of wheat in the field to achieve high-throughput 
nondestructive field measurement of the wheat ear num-
ber. Additionally, it has been found that there are differ-
ences in temperature between the ears and other organs 
in wheat. Fernandez-Gallego, et  al. [6] used a handheld 
thermal infrared instrument to measure the tempera-
ture distribution image of wheat in the field at the late-
filling stage, and was able to separate the ears from the 
environmental background, and count them using the 
contrast histogram equalization method. However, such 
passive remote sensing methods are vulnerable to illu-
mination conditions, background reflection, and vegeta-
tion structure. Many researchers have used deep learning 
to improve these shortcomings, but the deep learning 
approach needs to be based on a large amount of data, 
and it is challenging to build appropriate datasets [7–9]. 
In addition, image-based methods are unable to obtain 
fine three-dimensional (3-D) structural information 
from vegetation and suffer from more serious occlusion 
problems.

Light detection and ranging (LiDAR), as an active 
sensing technology, could record the 3-D structural 
morphology of an object by generating a point cloud 
through laser pulses [10]. Short wavelength laser radia-
tion can penetrate the vegetation canopy to characterize 
the internal structure of the vegetation, thus overcom-
ing the shortcomings of optical imaging techniques [11]. 
However, compared with the well-developed image pro-
cessing technology of optical imaging, the application 
of LiDAR for extraction of crop ear number features in 
the field is still in its infancy. Saeys, et al. [12] employed 
two types of LiDAR sensors on a harvester to scan manu-
ally constructed, mature wheat plots of different planting 
densities. The effect of various traversing speeds on the 
estimation of the wheat canopy density was explored by 
fitting the positions of the wheat ear using a thin plate 
smoothing spline. Velumani, et  al. [13] used two differ-
ent point cloud segmentation algorithms, voxel-based 
segmentation and mean shift segmentation, to isolate 
and cluster the point clouds of ears in the wheat canopy 
in the field to estimate the ear numbers. For sorghum, 

which is taller than wheat and has clear ear characteris-
tics, Malambo, et  al. [14] extracted features of sorghum 
ears at maturity by density clustering based on single sta-
tion terrestrial LiDAR point cloud data and measured the 
length and width of individual ears. Due to the conical 
view and the limited mounting height of ground-based 
LiDAR, dense vegetation canopies can be better observed 
from the zenith direction close to the ground [10]. There-
fore, Blanquart, et  al. [15] explored the use of various 
scan angles in LiDAR for estimating the wheat ear num-
ber in the field. The results showed that both the instru-
ment height and the scan angle affected the accuracy of 
the estimation; however, the height of the instrument had 
a greater effect on the accuracy.

In summary, the methods for estimating the wheat 
ear number based on point cloud data can be divided 
into two main approaches: point cloud extraction and 
point cloud clustering. The ear point cloud is generally 
extracted and clustered separately according to the dif-
ference in the point cloud densities between the ear and 
other organs [13, 14]. In addition to the differences in 
the densities of the point clouds for the ear and the other 
organs, there is also a clear morphological difference 
between the ear and the other organs. The ear grows on 
an upright stem, and the leaves are continuously curved 
surfaces; thus, the normal vector can be used as an indi-
cator of the stem and leaf segmentation of the crop [16]. 
In previous studies, the density of the point cloud was 
mostly used to set the segmentation threshold [10, 12]. 
However, in those algorithms, point clouds were underu-
tilized to obtain information about crop structure with-
out consideration of morphological differences among 
stems, ears, and leaves.

In addition to the density features, the 3-D spatial coor-
dinate information of the point cloud is also an important 
feature and includes the spatial correlation informa-
tion. To describe the spatial correlation of the discrete 
point clouds while reducing the amount of data, the dis-
crete point clouds are mostly integrated into connected 
regions (i.e., point cloud voxelization) for spatial opera-
tions in forestry applications [17]. Velumani, et  al. [13] 
coded the voxels to characterize the spatial correlation 
between the voxels and segmented the wheat ear point 
clouds. However, their study only involved wheat data 
from three microplots (10 m × 2 m). Therefore, the gen-
erality and universality of the algorithm under different 
growing conditions need to be further verified.

To rapidly and accurately determine the wheat ear 
number in the field, the present study entailed develop-
ing a density-based spatial clustering technique based 
on the normal (DBSC) and voxel-based regional growth 
(VBRG) algorithms in conjunction with terrestrial laser 
scanning (TLS) point cloud data to take advantage of 
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the morphological characteristics of wheat. The DBSC 
method is based on points for direct data processing and 
parameter extraction, while the VBRG method is based 
on connected regions consisting of voxels for area opera-
tions. In this study, the effect of the differences in wheat 
growth on the algorithm was studied by setting up dif-
ferent experimental conditions to test the generality and 
practicality of the algorithm. In addition, the advantages 
and disadvantages of the two algorithms were compared 
with the aim of finding a more suitable method for esti-
mating the number of wheat ears in the field.

Materials and methods
Experimental design
The study was conducted at the experimental station 
of the National Engineering and Technology Center for 
Information Agriculture (NETCIA) located in Rugao, 
Jiangsu Province in eastern China (120°45′E, 32°16′N) 
during the winter wheat season of 2018 to 2019. Two 
wheat cultivars, ‘Shenxuan 6’ (V1) and ‘Yangmai 16’ (V2), 
were selected as being representative of compact and 

diffuse plant types, respectively. Three nitrogen (N) ferti-
lization rates of 0 kg/ha (N0), 150 kg/ha (N1), and 300 kg/
ha (N2) were established, among which N1 was consist-
ent with the average nitrogen level. For each fertilizer 
regime, fifty percent of the N fertilizer was applied on the 
day of sowing, and 50% was applied at the jointing stage. 
Two planting density levels were set for the experiment: 
25 cm (2.4 × 106 seedlings/ha) for D1 and 40 cm (1.5 × 106 
seedlings/ha) for D2. For each set of growing conditions, 
the experimental design was established for split blocks 
with three replicates, for a total of 36 plots, each of which 
had an area of 30 m2 (6 m × 5 m) (Fig. 1).

Manual measurements
It is difficult and time-consuming to count all the ears in 
each plot by manual counting. Therefore, we selected two 
rows with a length of 1 m and a width of 0.25 m as the 
manual counting area (Fig. 1b). The area chosen needed 
to be consistent in growth status with the whole plot. 
We determined the number of wheat ears in those two 
rows by manual counting and averaged each row. The 

Fig. 1  a The field experimental design of the wheat; b Image of wheat in the region of interest, with the red area indicating the area of manual 
counting of the ear number; c RIEGL-VZ 1000 device operating in the field at Rugao; d TLS data for the whole experimental area at the heading 
stage as displayed in the supporting software RiCSAN PRO; e Point cloud for wheat in the region of interest
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wheat ear number for the whole plot was determined 
by accounting for the total area. Manual measurements 
were performed at four stages (heading, anthesis, early-
filling, and late filling), and terrestrial LiDAR measure-
ments were collected simultaneously.

TLS measurements and data processing
The TLS instrument used in the study was a RIEGL-VZ 
1000 system (RIEGL, Austria, https://​www.​riegl.​com), 
which is a pulsed 3D scanner that emits near-infrared 
laser radiation. The specifications of the RIEGL-VZ 1000 
system are listed in Table  1. To mitigate the effects of 
occlusion and to obtain a uniform point cloud density, a 
multiple-scan strategy was employed in all the trials. A 
10-site scanning strategy was used with a scanning mode 
of 60° (an angular resolution of 0.06°) (Fig. 1).

The preprocessing of the TLS data was conducted by 
the scanner bundled software RiSCAN Pro. The regis-
tration of the coordinates was the first step. An iterative 
closest point (ICP) algorithm was applied to register each 
independent scanner coordinate to the same reference 
coordinate system. The ICP algorithm calculated the 
transformation matrix by the least-squares method based 
on the corresponding points [18]. The coordinate regis-
tration was completed with an average error of 0.006 m 
for each campaign. Abnormal floating points caused by 
insects or airborne particles were removed manually. The 
wheat point clouds were then intercepted in the manually 
counted areas of each plot. Finally, the data for each area 
were exported into separate files.

Methods for estimating the ear number
Density‑based spatial clustering based on the normal
The algorithm of the density-based spatial clustering 
based on the normal (DBSC) includes three parts: point 
cloud preprocessing, ear point cloud segmentation, and 
ear point cloud clustering. First, the noise and irrelevant 
points in the point clouds were removed by the preproc-
essing step, then the leaf point clouds were divided from 

the stem & ear point clouds, and finally, the divided stem 
& ear point clouds were clustered as a function of den-
sity, and the ear number was counted (Fig. 2).

(1)	Point cloud preprocessing

The DBSC preprocessing method includes not only 
the usual alignment and denoising of the point clouds 
but also the removal of irrelevant points. The irrelevant 
points are point clouds in the middle and lower parts of 
the plant, where the probability of wheat ears appearing 
is low. The removal of irrelevant points requires deter-
mining a cutting height “h” and removing the point 
clouds below “h”. The value of “h” is determined by the 
self-adaptation threshold method of Otsu [19]. In this 
algorithm, the points in each 2 cm height layer serve as 
the x-axis, and the height values are used as the y-axis 
to make a histogram of the point cloud density distribu-
tion (Fig. 3a). The occlusion causes a loss of point cloud 
information for the stem and leaf in the lower and middle 
sections of the wheat canopy. Therefore, the point cloud 
density in the middle and lower sections is smaller than 
that in the upper section where the ear is located, result-
ing in different density peaks for the point clouds. In the 
Otsu method, the value of the trough is located between 
the two peaks within the histogram and the correspond-
ing height value is used as the cut height “h”.

(2)	Ear point cloud segmentation

Wheat ears and stems and leaves exhibit distinct differ-
ences in morphology. The ear grows on an upright stem 
and remains upright during the late-filling stage, while 
the leaves are continuously curved. Thus, there is a large 
difference in curvature between the ear and leaf. The nor-
mal direction can be represented as a line on the surface 
that is perpendicular to the tangent plane of the surface 
at a point. The normal angle corresponds to an angle that 
is between the normal and the direction perpendicular to 
the horizontal. This angle reflects the magnitude of the 
curvature of the surface at a point. Based on an analysis 
of the wheat morphology, an edge-based segmentation 
algorithm was selected to segment the ear point cloud 
from the original point cloud using the difference in nor-
mal angles for the stem and leaf as the differentiation 
index.

Individual points by themselves do not carry surface ori-
entation or normal information. However, it is possible to 
estimate normal angles for discrete point clouds within 
a point cloud. For this, we select k points in the neigh-
bourhood of the centre point (arbitrary point) to fit the 

Table 1  The specifications of the RIEGL-VZ 1000 system

Parameter Value

Scanning principle Pulse type

Laser wavelength 1550 nm

Maximum distance 1400 m

Pulse repetition rate 3 × 105 pulses/second

Scanning accuracy 5 mm @ 100 m

Scanning range 360° × 100°

Beam divergence 0.12 mrad

Weight 9.8 kg

https://www.riegl.com
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surface, construct the local surface, and extract the sur-
face normal. The following algorithm adopts the least-
squares surface fitting method to construct the surface 
[20]:

where S is the fitted surface, n is the surface normal vec-
tor, pi represents point i, and d represents the distance of 
pi from the origin of the coordinate (Fig. 4). The surface 
size changes as the number of points k changes. Two val-
ues of k with a tenfold difference in size (k2 = 10*k1) are 
typically chosen to obtain two fitted surfaces S1 and S2 
with different sizes (S1 < S2). The smaller area surface S1 

(1)S(n, d) = argmin

k
∑

i=1

(npi − d)2

is contained within the larger area surface S2. The dif-
ference between the normals of S1 and S2 can be deter-
mined by calculating the differences among the normals 
of all points in the range of S1, which can then be applied 
in the next step of the cluster analysis.

In the present study, normal extraction was performed 
by principal component analysis (PCA), which analyses 
the eigenvectors and eigenvalues of a covariance matrix 
composed of study points and points in the nearest 
domain [16, 21, 22].

(2)M =
1

k

k
∑

i=1

(pi − p) (pi − p)T

Fig. 2  Workflow for estimating the ear number with DBSC
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Fig. 3  Schematic diagrams of removing irrelevant points (a) and segmenting ear point clouds (b) using the Otsu method. Subplots (a) and (b) 
show the histogram distribution of the point cloud density and the normal vector difference of the two cultivars (V1 and V2), N fertilization rates 
(N0, the N1, and N2) and planting densities (D1 and D2) for wheat during the early-filling stage

Fig. 4  Schematic of the normal vector variance θ (p1, p2 are data points; the ellipses represent the fitted planes S1, S2; the arrows represent 
the corresponding normal vectors n1, n2 for the plane; θ1, θ2 are the corresponding differences in degrees between the normal vectors)



Page 7 of 18Gu et al. Plant Methods          (2023) 19:134 	

where M is the covariance matrix, and p is the centre of 
gravity of the surface S. The normal vector n is the third 
eigenvector of the covariance matrix.

The angle θ between two normal vectors (n1, n2) with 
different directions is defined as the normal vector 
difference:

where n1 and n2 correspond to the surface normal vec-
tors of surfaces S1 and S2, respectively. The angle θ repre-
sents the magnitude of the curvature of the surface at a 
point (Fig. 4).

The neighbourhood normal variance θ values for each 
point were next determined, and then the histogram for 
the distribution of the θ values was generated (Fig.  3b). 
To reduce human involvement, the optimal segmentation 
threshold was determined by the Otsu algorithm (the 
range of segmentation threshold values in this study was 
0.8 ~ 1.0 rad). The point clouds for leaves larger than the 
threshold value were removed, leaving the point clouds 
of the stem & ear, which were smaller than the threshold 
value, for the next point cloud clustering.

(3)	Ear point cloud clustering

The density of the point clouds is different for wheat 
canopies of different heights, and the point clouds 
have clear density characteristics that vary with height 
(Fig.  3a). Therefore, the density-based spatial clustering 
of applications with noise (DBSCAN) algorithm, which 
is based on density features for clustering, was chosen as 
the algorithm to complete the ear counting. DBSCAN is a 
density-based spatial clustering algorithm [23]. The den-
sity in this algorithm refers to the point density, which is 
defined as the minimum number of adjacent data points 
(MinPts) within the specified radius (Eps). The algorithm 
divides regions with sufficient density into clusters and 
finds arbitrarily shaped clusters in a spatial database with 
noise. It defines a cluster as the largest set of densely 
connected points. Compared to k-means, this algorithm 
does not require a predeclared number of clusters and is 
less sensitive to outliers in the data.

The points are divided into three clusters in DBSCAN 
(Fig. 5) as follows: (1) Core points: the number of points 
in the Eps neighbourhood of sample point xi is at least 
MinPts. (2) Border points: the number of points in 
the Eps neighbourhood of sample point xi is less than 
MinPts; meanwhile, xi is in the neighbourhood of other 

(3)pi =
1

k

k
∑

i=1

pi,j

(4)θ = arccos
[n1, n2]

�n1��n2�
(0,π)

core points. (3) Noise point: a point that is neither a core 
point nor a boundary point.

In the DBSCAN algorithm, the high-density regions that 
are separated from the low-density regions are grouped as 
a “cluster”. The flow of the algorithm proceeds as follows:

•	 An unmarked point is selected randomly as a core 
point.

•	 The data points within the specified radius Eps of 
the core point are grouped. The only parameter that 
needs to be customized in this algorithm is MinPts, 
which is the number of points in the neighbourhood 
of the core point (MinPts were set in the range of 5 
to 15 in this study). Eps is the radius of the smallest 
circular area that encloses all points.

•	 The above process is repeated until all the data points 
in the dataset are traversed.

Finally, the number of clusters determined is the num-
ber of ears.

Voxel‑based regional growth
The algorithm for voxel-based regional growth (VBRG) 
includes three elements, namely, voxelization of the point 
clouds, establishment of a topological relationship among 
the voxels, and voxel clustering. First, a voxelization algo-
rithm was used to integrate the point clouds into voxels 
of regular size and to extract the curvature of the voxel 
as a feature. Second, a topological relationship among the 
voxels was established according to the k-dimensional 
tree (kd-tree), which was composited as a connected 
area. Finally, a region-growing algorithm was used to 
divide the voxels into clusters, and the number of clusters 
was the number of ears (Fig. 6).

(1)	Point cloud voxelization

The concept of the voxel may be considered analogous 
to the concept of the pixel in the two-dimensional plane. 
A voxel, the smallest unit of division in three-dimensional 

Fig. 5  Three types of data points in DBSCAN
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space, may be defined as a cube that exists in three-
dimensional space. Voxelization is the process of estab-
lishing the surface shape of a target object with a finite 
number of cubes (Fig. 7). Voxelization not only preserves 
more surface information about the target object but also 
helps to reduce noise and redundancy in point cloud data 

pre-processing [24]. The process of point cloud voxeliza-
tion is as follows:

•	 Initial voxel creation. First, the maximum coordi-
nate value Pmax (xmax, ymax, zmax) and the minimum 
coordinate value Pmin (xmin, ymin, zmin) are calculated 

Fig. 6  Workflow for estimating the ear number in VBRG

Fig. 7  The voxelization process. a The point clouds of a single wheat plant, b the initial voxel, and c the segmented voxels
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for all points in the dataset. Second, an initial voxel 
(space bounding box) is calculated according to 
Pmax and Pmin, where the length, width, and height 
are given by xmax-xmin, ymax-ymin, and zmax-zmin, 
respectively.

•	 Initial voxel segmentation. The initial voxel is divided 
into small voxels with a specific resolution. The set-
ting of voxel resolution impacts the subsequent algo-
rithm [17]. The use of larger voxels results in a seri-
ous loss of detailed information, whereas the use of 
smaller voxels affects the efficiency of data processing 
in the algorithm. Currently, there is no clear method 
for determining the optimal voxel resolution, and it is 
generally necessary to choose the best value accord-
ing to the specific object of study [17]. In this study, a 
voxel resolution of 1 cm in length, width, and height 
was adopted [13].

•	 Irrelevant voxel elimination. After completing the 
voxelization of the point cloud surface, the Bresen-
ham algorithm was used to voxelize the internal 
space of the point cloud and remove the blank voxels 
inside the enclosing box of the space. The Bresenham 
algorithm is the most widely used linear scan con-
version method in the field of computer graphics. 
Expanding to three-dimensional space and taking 
Pmin as the starting point and each data point as the 
ending point, we determined the voxel space where 
the data points were located [25] (Fig. 7).

•	 Calculation of curvature

(2)	Calculation of curvature

In this study, curvature was selected as a characteristic 
of the voxel according to the morphological characteris-
tics of the wheat stem and leaf. Curvature is an indica-
tor that can be used to measure the degree of unevenness 
of the geometry [21]. The curvature of a surface can be 
described with the maximum curvature, the minimum 
curvature, the mean curvature, the Gaussian curvature, 
etc. In this study, the mean curvature of the surface 
constructed by a single voxel interior point was used as 
the voxel feature. The surfaces were constructed using 
the moving least squares (MLS) method. MLS does not 
require meshing of the fitted domain and is suitable for 
the discrete point model, resulting in smoother and more 
accurate surfaces [20]. The curvature may be calculated 
as follows:

•	 The average curvature Cn of a point p is calculated for 
the surface.

where −→n  is the normal vector, ∇A is an infinitely 
small region around p, and diam (A) is the diameter 
of this region and is the gradient operator for point p.

•	 The average curvature of pi was determined by dis-
cretizing Eq. (5),

where Ni is the set that is the diagonal of the cotαij , 
cotβij which connect the pi , pj edges, respectively.

The determined voxels can be represented as voxel (x ̅, 
y ̅, z ̅, C), where (x ̅, y ̅, z ̅) are the 3D coordinates of the 
centre of gravity point of the voxels and C is the mean 
curvature of the voxel.

(3)	Establishment of the topological relationship among 
the voxels

Topological relationships should be established for 
voxels to form connected regions, speed up the inter-
neighbourhood search, and improve the algorithm 
efficiency. A k-dimensional tree (kd-tree) was used to 
establish the topological relationships between the 
voxels. The kd-tree is a binary tree that partitions the 
k-dimensional data space [26]. For 3D space, spatial 
partitioning between point clouds in three dimensions 
is needed to create a spatial structure based on the 
Euclidean distance between the points.

(4)	The number of ears as determined by the regional 
growth algorithm

After the connected regions of the voxels were estab-
lished, the wheat ear point clouds were extracted based 
on the regional growth algorithm. The regional growth 
algorithm is a region-based segmentation algorithm 
that merges points with similar properties. First, a seed 
point is designated in an area as the starting point for 
growth. Second, the points in the field around the seed 
point are compared with the seed point, and the points 
with similar properties are merged and continue to 
grow outwards until no points satisfying the conditions 
are included. The regional growth algorithm can parti-
tion out connected regions with the same characteris-
tics without prior knowledge and can provide boundary 

(5)2Cn
−→n = lim

diam(A)

∇A

A

(6)Cn(pi) =
−→n

4Amin
γ

(7)γ =
∑

j∈Ni

(

cotαij + cotβij
)(

pi − pj
)
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information [27–29]. The regional growth of voxels 
takes the centre of gravity of the voxels as the object 
and the curvature as the feature of the voxels. The flow 
of the algorithm proceeds as follows:

•	 Selection of seed points. The selection of seed points 
affects the accuracy of segmentation. In this study, 
the curvature of the voxel was ranked, and the point 
with the lowest curvature was selected as the initial 
seed point. What is meant by minimum curvature is 
that the area where the initial seed point is located 
is the smoothest. Growth from the smoothest region 
reduces the total number of regions, improves com-
putational efficiency, and enables the problem of 
region overlap in the segmentation to be avoided.

•	 Setting of growth criteria. In this study, the regional 
growth of the voxels was based on the curvature. 
The setting of the curvature threshold is crucial, and 
improper selection can easily cause over-segmenta-
tion or under-segmentation. The histogram for the 
statistical distribution of the voxel curvature was 
used to calculate the optimal threshold value using 
the Otsu algorithm. The segmentation thresholds 
in this study were set to range from 0.3 to 0.8 cm−1. 
The curvature value for each neighbouring point was 
checked, and the neighbouring points that were less 
than the curvature threshold were added to the cur-
rent seed point sequence.

•	 Condition for setting the termination of growth The 
growth was terminated when the voxel curvature 
value was greater than the curvature threshold.

The undefined voxels were then reselected, and the 
first and second steps were repeated until all voxels 
were traversed and the number of regions was output-
ted; this value corresponded to the number of ears.

Statistical analysis
The agreement between the number of ears computed with 
the developed methods and the reference ear numbers 
(manual measurements) was evaluated based on Pearson’s 
correlation coefficient (r) as calculated in Eq. (8). The pre-
cision for the number of ears computed with respect to 
the reference data was also assessed using the root mean 
square error (RMSE) and relative RMSE (rRMSE), which 
were calculated using Eqs. (9) and (10) as follows:

(8)r =

∑Nplot

i=1

(

yi − y
)(

yi′ − y′
)

√

∑Nplot

i=1

(

yi − y
)2
√

∑Nplot

i=1

(

yi′ − y′
)2

where yi and yi′ are the measured and estimated ear 
numbers for sample i , respectively, y and y′ are the aver-
aged measured and estimated ear numbers over all sam-
ples, respectively, and Nplot is the number of plots. All 
algorithms in this study were implemented in MATLAB 
2016a (MathWorks®, USA).

In addition, we used one-way ANOVA to investigate 
the differences between the estimations of ear numbers 
with different wheat cultivars, nitrogen fertilization rates, 
and planting densities in each method. Meanwhile, we 
also investigated the difference between the estimation 
results of the two methods. Duncan’s multiple compari-
sons post hoc test was used to determine differences 
between stratified means (P < 0.05).

Results
Estimation of the number of wheat ears with terrestrial 
LiDAR
The developed DBSC and VBRG methods can effectively 
calculate the number of wheat ears in the field (Fig.  8). 
The DBSC has a high estimation accuracy (RMSE = 76 
ears/m2, rRMSE = 18.62%, r = 0.84) but produces a slight 
underestimation overall. The VBRG has a low estima-
tion accuracy (RMSE = 114 ears/m2, rRMSE = 27.96%, 
r = 0.76), producing an underestimation at low values and 
an overestimation at high values. In addition, there were 
significant differences in the results by the three meth-
ods (DBSC, VBRG, and manual measurement) (P < 0.01). 
That is, the results with DBSC were significantly different 
from those with VBRG and those with manual measure-
ments, while the VBRG and field measurement results 
were not significantly different.

In addition, the DBSC and VBRG have higher efficiency 
compared to manual counting (Table  2). The manual 
counting required 6 h/person to complete ear counts in 
36 plots. For the same amount of work, TLS data acqui-
sition and pre-processing takes a total of 2.3  h, and the 
actual calculation times for DBSC and VBRG are only 
0.2 h and 0.4 h, respectively.

Accuracy of the estimated number of ears for the different 
growth stages
The accuracies for the estimation of the number of 
wheat ears by DBSC and VBRG are shown in Fig.  9. 
For the DBSC method, the accuracy overall gradually 

(9)RMSE =

√

√

√

√

∑Nplot

i=1

(

yi − yi′
)2

Nplot

(10)rRMSE =
RMSE

y
× 100%
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increased with the progression of growth stages. The 
highest accuracy occurred at anthesis (RMSE = 68 ears/
m2, rRMSE = 15.99%, r = 0.85), and the lowest accuracy 
was found for the early-filling stage (RMSE = 85 ears/
m2, rRMSE = 20.06%, r = 0.78). The underestimation 
phenomenon gradually decreased with the progres-
sion of the wheat growth stages, while overestimation 
occurred in late filling. For the VBRG method, accuracy 
was high at the heading and late filling stages and was 
low at anthesis and the early-filling stage. The highest 
accuracy occurred at the early-filling stage (RMSE = 95 
ears/m2, rRMSE = 22.44%, r = 0.79), and the lowest 
accuracy occurred at anthesis (RMSE = 130 ears/m2, 

rRMSE = 30.51%, r = 0.79). The estimation accuracy 
of the DBSC was higher than that of the VBRG for all 
growth stages. Figure 10 shows the analysis of the dif-
ferences among the results with the different methods 
(DBSC, VBRG, and manual measurement) for different 
growth stages. There were significant differences in the 
results among different growth stages with both DBSC 
and manual measurements (P < 0.001). However, there 
were no significant differences in the results among dif-
ferent growth stages with VBRG.

Accuracy of the estimated number of ears for the different 
cultivars
Two cultivars of wheat (‘Shenxuan 6’ is a compact 
plant and ‘Yangmai 16’ has a more open growth habit) 
were selected to investigate the possibility of different 
plant types affecting the accuracies of estimation of the 
number of ears by the two algorithms. For the DBSC 
method, the accuracy of the estimation was found to 
be higher for the compact type (RMSE = 77 ears/m2, 
rRMSE = 18.12%, r = 0.88) and lower for the open-habit 
type (RMSE = 77 ears/m2, rRMSE = 18.12%, r = 0.88). 
Similarly, in the case of the VBRG method, the esti-
mation accuracy for the compact type (RMSE = 117 
ears/m2, rRMSE = 27.67%, r = 0.77) was higher than 
that for the open-habit type (RMSE = 110 ears/m2, 

Fig. 8  The estimation accuracy of DBSC (a) and VBRG (b) and analysis of differences among the three estimation methods (DBSC, VBRG, 
and manual measurement) using an ANOVA test (Significance level: ***P < 0.001, **P < 0.01, *P < 0.05, ns: no significance) (c). Different lowercase 
letters in each group indicate significant differences at P < 0.05

Table 2  Comparison of time consumption between manual 
counting, DBSC, and VBRG

A total of 4 persons were involved in the manual counting

Methods Time (36 plots) Total time (36 plots)

Manual 6 h/person 6 h/person

DBSC

 TLS scanning 1.6 h 2.5 h

 Data pre-processing 0.7 h

 Calculation 0.2 h

VBRG

 TLS scanning 1.6 h 2.7 h

 Data pre-processing 0.7 h

 Calculation 0.4 h
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rRMSE = 28.26%, r = 0.76) (Fig.  11). There were sig-
nificant differences in the results between different 
cultivars in both the VBRG and manual measurement 
results (P < 0.05). However, there were no significant 
differences in the estimates between the two different 
cultivars with the DBSC method (Fig. 12).

Accuracy of the estimated number of ears at various N 
fertilization rates
Three N fertilization rates (N0, N1, and N2) for the 
wheat were used to investigate whether the N fertili-
zation rate would affect the accuracies of the estima-
tion of the number of ears based with the DBSC and 
VBRG methods (Fig.  13). The estimation accuracy 
decreased with increasing N fertilization rates with the 
DBSC method, with the highest accuracy being with N0 

Fig. 9  Accuracy of estimation of DBSC and VBRG for various growth stages (heading, anthesis, early-filling, and late filling)

Fig. 10  Analysis of the differences between the results of the estimation of different growth stages under different methods (a DBSC, b VBRG, c 
manual measurement) using an ANOVA test (Significance level: ***P < 0.001, **P < 0.01, *P < 0.05, ns: no significance). Different lowercase letters 
in each group indicate significant differences at P < 0.05
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(RMSE = 65 ears/m2, rRMSE = 16.18%). For the DBSC 
method, the highest accuracy was with N1 (RMSE = 88 
ears/m2, rRMSE = 23.22%), and the lowest accuracy 
was with N2 (RMSE = 131 ears/m2, rRMSE = 30.19%). 
There was no significant difference in the estimates 
among the different N fertilization rates with the DBSC 
method. However, in the VBRG (P < 0.01) and manual 
measurements (P < 0.05), there were significant differ-
ences in the results among the different N fertilization 
rates (Fig. 14).

Accuracy of the estimated number of ears for various 
planting densities
Two planting densities for wheat (20  cm and 40  cm) 
were used to investigate whether the planting den-
sity would affect the accuracies of estimation for the 
number of ears with the DBSC and VBRG methods. 
For the DBSC method, the accuracy of the estimation 
was higher for the 25 cm planting density (RMSE = 74 

ears/m2, rRMSE = 19.71%) than for the 40  cm plant-
ing density (RMSE = 77 ears/m2, rRMSE = 20.30%). 
In the case of the VBRG method, the accuracy of the 
estimation was also higher for the 25  cm planting 
density (RMSE = 103 ears/m2, rRMSE = 27.13%) than 
for the 40  cm planting density (RMSE = 124 ears/m2, 
rRMSE = 32.69%) (Fig. 15). In all three methods, DBSC 
(P < 0.001), VBRG (P < 0.05) and manual measurement 
(P < 0.001), the results at the two different planting den-
sities were significantly different (Fig. 16).

Discussion
Factors affecting the accuracy of DBSC estimation
Compared with the methods of previous studies, the 
DBSC method makes full use of the structural infor-
mation of the point clouds based on the morphological 
differences between the stems and leaves. The segmen-
tation threshold is determined by the Otsu algorithm, 

Fig. 11  Accuracy of DBSC and VBRG estimation for two cultivars. Indoor images of the plants of the different cultivars (a compact type: ‘Shengxuan 
6’; b diffuse type: ‘Yangmai 16’)

Fig. 12  Analysis of the differences between the results of different cultivars (‘Shengxuan 6’ and ‘Yangmai 16’) under different methods (a DBSC, b 
VBRG, c manual measurement) using an ANOVA test (Significance level: ***P < 0.001, **P < 0.01, *P < 0.05, ns: no significance)
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which reduces human involvement and improves the 
generalizability of the algorithm. An algorithm based 
on differences in density for clustering, known as a 
density-based clustering algorithm, is a feature of the 
DBSC method. When the density of the point cloud 
data is not uniformly distributed, the accuracy of the 

DBSC method will be affected. The structure of the 
wheat canopy changes significantly with the growth 
stage. The spatial heterogeneity of the canopy gradu-
ally increases from the heading stage to the late-filling 
stage, which increases the inhomogeneity of the density 
distribution of the point cloud data and decreases the 

Fig. 13  The accuracy of ear number estimation for different N fertilization rates using the DBSC and VBRG methods

Fig. 14  Analysis of the differences between the results of different N fertilization rates under different methods (a DBSC, b VBRG, c manual 
measurement) using an ANOVA test (Significance level: ***P < 0.001, **P < 0.01, *P < 0.05, ns: no significance). Different lowercase letters in each 
group indicate significant differences at P < 0.05
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accuracy of the estimation of the algorithm (Fig. 9). For 
density-based clustering, different combinations of the 
parameters MinPts and Eps have a large impact on the 
clustering effect [30]. When the spatial density of clus-
ters is not uniformly distributed and the spacing differ-
ence is large, the selection of the parameters MinPts 
and Eps is difficult, resulting in poor clustering quality. 
The determination of the MinPts values relies on the 
availability of known reference values, which are empir-
ical and have poor reliability. In future research, new 
methods for determining the key parameters should be 
sought to facilitate the automation of the algorithm.

Factors affecting the accuracy of VBRG estimation
The voxelization in the VBRG method transforms dis-
crete point clouds into connected regions to better 
exploit the spatial correlation of the point clouds. First, 
the voxel size has an impact on the accuracy of the algo-
rithm [17]. When the voxel is too large, it contains too 
many data points, and the loss of detailed information 

is severe. The choice of voxel size needs to be deter-
mined and optimized based on the size and shape of the 
study object. Second, the selection of voxel features also 
has an impact on the subsequent algorithmic process. 
The voxelization process has a smoothing effect. When 
the point cloud density is high, different types of point 
clouds are mixed in a single voxel. As a result, different 
types of point clouds produce only one curvature fea-
ture, which results in an underestimation of curvature 
features. When the point cloud density is low, the cur-
vature features are insignificant, and the resulting eigen-
values are overestimated. Both of these scenarios may 
reduce the accuracy of the estimation. Furthermore, the 
threshold values in this study were determined mostly 
by the Otsu algorithm. If the data distribution does not 
have significant peaks and valleys, i.e., the data are not 
well differentiated, the accuracy for the determination of 
the threshold would be reduced. In other words, voxeli-
zation reduces the differentiation between data, which 
makes the subsequent regional growth algorithm unable 

Fig. 15  The accuracy of ear number estimation for different planting densities (a 25 cm; b 40 cm) using the DBSC and VBRG methods

Fig. 16  Analysis of the differences between the results for two different planting densities with the three methods (a DBSC, b VBRG, c manual 
measurement) using an ANOVA test (Significance level: ***P < 0.001, **P < 0.01, *P < 0.05, ns: no significance)
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to classify accurately, which affects the accuracy of the 
algorithm. The regional growth algorithm is widely used 
in 3D point cloud segmentation and clustering because 
of its simplicity and ease of implementation [31–34]. 
However, the regional growth algorithm also has some 
drawbacks, such as being sensitive to noise and being 
influenced by seed point selection and growth condi-
tions. The sensitivity of the regional growth algorithm 
to noise arises from the regional growth conditions, i.e., 
point cloud features such as normal angle and curva-
ture. These curvature features are susceptible to point 
cloud noise and missing organ point cloud, which may 
affect the regional growth algorithm. In this study, when 
the planting density was increased, the amount of point 
cloud data increased, and the noise also increased, which 
resulted in a reduction in the accuracy of the estimation 
(the RMSE increased from 103 ears/m2 to 124 ears/m2) 
(Fig. 15). Improving the sensitivity of the growth condi-
tions parameter to noise can greatly enhance the robust-
ness of the algorithm. Principal component analysis can 
be used to extract the feature vectors of the data, mitigate 
the effect of noise and improve the operation of the algo-
rithm [34].

Comparison between DBSC and VBRG
The DBSC method is more suitable for estimating the 
number of ears of wheat in the field than the VBRG 
method (Fig. 8). In addition, the DBSC method requires 
less calculation time and is more suitable for handling 
large data volumes than the VBRG, which encodes voxels 
to construct connected components (Table  2) [13]. The 
DBSC method uses points as the basic unit, which can 
better represent local point cloud features. Hence, the 
determined feature vectors are more representative. This 
method is simple in principle, easy to implement and pro-
vides a more accurate characterization of organ growth. 
However, the computational efficiency of the method 
decreases with an increase in the number of point clouds 
and is sensitive to the threshold value that has been set. 
The VBRG method uses voxels as the basic unit, which 
reduces data redundancy and computation. However, the 
size of the voxels is not readily determined and is more 
sensitive to variations in the internal point density. The 
method only selects the main features inside the voxels, 
and some detailed information may be lost. In particular, 
the iterations of the regional growth algorithm reduce 
the robustness of the whole algorithm. Overall, the 
DBSC algorithm (RMSE = 76 ears/m2, rRMSE = 18.62%, 
r = 0.84) exhibited a higher accuracy than the VBRG algo-
rithm (RMSE = 114 ears/m2, rRMSE = 27.96%, r = 0.76) 
and was more suitable for estimating the number of ears 
of wheat in the field (Fig. 8).

Limitations and prospects of DBSC and VBRG
Many studies have measured wheat ear morphology by 
the colour, texture, edge and orientation characteristics 
of RGB images [3, 35]. However, the problem of ear shad-
ing in three-dimensional space has still not been effec-
tively addressed. Point cloud-based DBSC and VBRG 
methods have 3D spatial advantages over image recogni-
tion. Therefore, such methods could provide an effective 
solution for the problem of ear shading. Nevertheless, 
there are some issues with the DBSC and VBRG meth-
ods. For example, the problem of missing point clouds in 
the lower part of the wheat canopy in a field environment 
leads to a decrease in the estimation accuracy of DBSC 
and VBRG. Therefore, the TLS scanning site should be 
continuously optimized during the data acquisition phase 
to obtain high-quality point cloud data [36]. In addition, 
more complete wheat point clouds in the field should be 
generated by fusing point cloud data from TLS and UAV-
borne LiDAR [37]. At present, deep learning has been 
widely used in the classification and recognition of crop 
organ point clouds. For example, Jin, et  al. [38] effec-
tively extracted maize structural phenotypic parameters 
using TLS data and deep convolutional neural networks. 
Therefore, optimization of DBSC and VBRG algorithms 
by deep learning deserves further research.

In addition, we used Otsu twice to distinguish point 
clouds of uncorrelated, stems, leaves, and ears in the 
DBSC. Because the ear has a higher height with a denser 
point cloud when compared with that of leaf and stem in 
wheat in this study. Otsu has been shown to be effective 
in distinguishing point clouds of different crop organs 
[13, 14]. For example, Velumani, et al. [13] distinguished 
ear and non-ear point clouds of wheat by height based 
on Otsu. Malambo, et al. [14] also determined the point 
cloud of green and non-green leaves of sorghum based 
on Otsu through vegetation indices. However, Otsu has 
some limitations. For example, the ears are more upright 
than the leaves for the wheat cultivars in this study, and 
the ears point cloud can be identified by the different 
normal vector difference between ears and leaves. How-
ever, for some wheat cultivars which have curved ears, 
the accuracy of ear identification may decrease. There-
fore, we need to improve this algorithm so that it could 
be applied to those cultivars with bending ear. In the 
future, we can fusion some features of ear volume and 
reflection intensity of the ear point cloud to reduce the 
effect of ear bending on the current algorithm.

Conclusion
In this study, two efficient, non-destructive, and high-
throughput algorithms for the automatic calculation of the 
ear counts for wheat in the field based on terrestrial LiDAR 
data were proposed and compared. The DBSC method first 
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separates the stem & ear point clouds from the leaf point 
clouds by the normal difference and then uses a density 
clustering algorithm to detect the number of ears in the 
ear point clouds. The VBRG method features voxelized 
discrete point clouds, constructs intervoxel topologies, and 
clusters the voxels in connected regions using a regional 
growth algorithm to calculate the number of ears. The 
results demonstrated that both algorithms improved accu-
racy and flexibility for the LiDAR measurement and assess-
ment of the different growth stages, planting densities, 
and wheat cultivars. The DBSC method performed better 
than the VBRG method in all aspects. In particular, given 
that the DBSC method is point-based, it can retain more 
detailed information and is more suitable for field studies 
on wheat. Currently, noise and occlusion problems occur 
when using LiDAR to acquire wheat point clouds because 
the wheat canopy is low and dense. Since the noise may 
produce misclassification of ears with the result of overesti-
mation, and the occlusion may lead to underestimation due 
to miss the ears. It will have a large impact on the method-
ology of ear recognition here. In the future, we can remove 
noise through deep learning and reduce occlusion issues 
through multi-platform LiDAR (e.g. UAV-borne LiDAR 
and backpack LiDAR). In addition, refinement of the algo-
rithm parameters, especially with respect to selection of 
the study objects and their morphological characteristics, 
is a topic that warrants further attention in future research.
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