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Abstract 

Background Lodging or stem bending decreases wheat yield quality and quantity. Thus, the traits reflected in early 
lodging wheat are helpful for early monitoring to some extent. In order to identify the superior genotypes and com-
pare multiple linear regression (MLR) with support vector regression (SVR), artificial neural network (ANN), and ran-
dom forest regression (RF) for predicting lodging in Iranian wheat accessions, a total of 228 wheat accessions were 
cultivated under field conditions in an alpha-lattice experiment, randomized incomplete block design, with two 
replications in two cropping seasons (2018–2019 and 2019–2020). To measure traits, a total of 20 plants were isolated 
from each plot and were measured using image processing.

Results The lodging score index (LS) had the highest positive correlation with plant height (r = 0.78**), Number 
of nodes (r = 0.71**), and internode length 1 (r = 0.70**). Genotypes were classified into four groups based on heat 
map output. The most lodging-resistant genotypes showed a lodging index of zero or close to zero. The findings 
revealed that the RF algorithm provided a more accurate estimate  (R2 = 0.887 and RMSE = 0.091 for training data 
and  R2 = 0.768 and RMSE = 0.124 for testing data) of wheat lodging than the ANN and SVR algorithms, and its robust-
ness was as good as ANN but better than SVR.

Conclusion Overall, it seems that the RF model can provide a helpful predictive and exploratory tool to estimate 
wheat lodging in the field. This work can contribute to the adoption of managerial approaches for precise and non-
destructive monitoring of lodging.
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Background
Lodging is defined as the displacement of the root 
anchorage and/or the irreversible bending of crop stems 
from the vertical [1]. This situation causes some diffi-
culties, including raised drying costs, slowed harvest, 
reduced grain quality, destructed canopy structure, and 
drastic yield losses of up to 85% [2–4]. Lodging in crops is 

derived from the complicated interactions between agro-
nomical, environmental, and genetic factors, making this 
event distinctive with various onset, intensity, and dura-
tion [5]. A complex genetic architecture underlies wheat 
lodging physiology [6–8]. A handful of small to moderate 
effect quantitative trait loci (QTL) have been identified, 
accounting for 2–27% of stem strength and lodging vari-
ation [9–11]. The evaluation of lodging level is challeng-
ing because of the absence of data associated with it, the 
lack of standard scales to present it, the random distribu-
tion of lodging on a farm, and complicated interactions 
between genetic and environmental elements [12–14]. As 
a main challenge, there aren’t annual statistics of lodged 
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areas related to various crops at global, regional, or local 
scales [15].

Crop agronomists and physiologists study lodging 
widely but their scope is often restricted. This includes 
agronomic practices (that can decrease lodging-related 
risks), breeding programs (that can produce lodging-tol-
erant cultivars), [16], phenotypic studies [16], and lodg-
ing angle on wheat growth [17]. The findings of these 
researches indicated that three key elements determine 
the level of lodging and the percentage of yield loss- the 
lodging angle or crop angle of inclination (CAI), the spa-
tial extent of lodging, and the crop growth stage (time of 
lodging incidence) [17]. By definition, CAI is known as 
the angles made by stems respecting the vertical situa-
tion [18]. At the time of the lodging process, a crop can 
undergo a sequence of steps (i.e., lodging stages) begin-
ning with CAI∼0° (a low deviation from the vertical situ-
ation) and finishing with CAI∼90° (crop bending close to 
the horizontal situation) [13]. Thus, CAI levels (ranging 
from moderate to very severe) can be used as a critical 
parameter to elucidate the lodging stage and/or the can-
opy structure of lodged crops [16, 19].

A precise calculation of CAI contributes to the approx-
imation of lodging-originated yield loss in crops [20]. 
Fischer and Stapper [21], for instance, exhibited that the 
wheat yield loss at a CAI of 80° was approximately three-
fold than that at a CAI of 45°. Lodging area percentage 
combined with CAI can help dedicate lodging score to a 
crop. i.e., a lodging severity indicator combining lodged 
area and CAI [4]. An estimation of CAI can therefore be 
useful to insurance loss estimators (to get a view of the 
damage level) and farmers (to keep down the harvesting 
loss) [22]. The classic methodologies to evaluate lodging 
stages and calculate CAI rely on visual rating and manual 
tools. These methodologies are costly and time consum-
ing, therefore, their usage is severely restricted for cov-
ering large regions. Moreover, the high spatial variation 
related to lodging makes it difficult to capture this diver-
sity with manual tools [1]. As an alternative approach, 
machine learning predictive approaches have attracted 
a lot of attention in the crop academic community to 
meet the challenges of classical methodologies in lodging 
assessment [13].

The digital analysis offers a promising method for 
examining morphological discrepancies from an eco-
logical, taxonomic, and phylogenetic perspective [23]. 
Through imaging-based phenotypic evaluations, a range 
of agronomic traits has been discovered and translated, 
providing a better understanding of the relationship 
between important breeding traits [24]. The Chauhan 
et al. [17] study found that the use of synthetic aperture 
radar data for lodging assessment was only mentioned in 
eight peer-reviewed articles publications between 1984 

and 2018, four of which used satellite-based remote sens-
ing data. Most studies examined the behavior of remote 
sensing signals in relation to lodged crops (primarily for 
detection purposes). Meanwhile, this method is only 
suitable for large cultivated areas [17]. However, image 
processing technology has been identified as a candidate 
tool for crop phenotyping detection in recent decades, 
which can be used for small cultivated areas (< 10  m2).

Estimation of crop traits from field data has been car-
ried out by various modeling procedures, such as support 
vector regression (SVR), artificial neural network (ANN), 
random forest regression (RF), and multiple linear regres-
sion (MLR) [22, 25–31]. Although these approaches are 
sound theoretically in data interpretation, the inversion 
of crop traits is still challenging because of intensive data 
requirements, restricted operational usage, and inherent 
complexity [32, 33]. There is no report, to the best of our 
knowledge, on the application of regression and machine 
learning predictive models for the estimation of lodging 
in Iranian wheat accessions. Thus, the purpose of this 
paper is to screen the wheat genotypes for lodging resist-
ance and compare the efficiency of MLR, ANN, SVR, and 
RF for predicting lodging and its related traits.

Materials and methods
The research area
This research was performed in the research field of the 
Agriculture & Natural Resources Campus (35°48′59″N, 
51°58′48″E, 1321 m elevation), located in the province of 
Alborz, Iran (Fig. 1). The study area is shown in Fig. 1A, 
the wind rose plot in Fig. 1B, and the climatic character-
istics in Fig. 1C. This field covers around 246 ha and its 
main crops are wheat, corn, barley, and alfalfa. The cli-
mate in this area is dry and warm. The soil texture mainly 
consisted of clay and silt. The annual average temperature 
and precipitation are 22 °C and 248 mm, respectively. The 
chemical and physical characteristics of the field soil are 
given in Table 1.

Experimental design
To evaluate wheat lodging and related traits under nor-
mal conditions, a total of 228 wheat accessions (156 
native landraces and 72 cultivars) were tested in an 
alpha-lattice experiment, randomized incomplete block 
design, with two replications in two cropping seasons 
(2018–2019 and 2019–2020). The sizes of the plots were 
adjusted to 2  m2. To measure lodging and related traits in 
wheat accessions, notes were taken in the pre-physiolog-
ical stage.
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Trait measurements
The traits measured in this study were as follows: Grain 
yield (GY, gr per plant), spike area (SA,  cm2), spike weight 
(SW, gr), days to maturity (DTM), days to flowering 

(DTF), days to heading (DTH), internode diameter 1 and 
2 (ID1 and ID2, mm), penultimate diameter (PeD, mm), 
peduncle diameter (PD, mm), internode length 1 and 2 
(IL1 and IL2, cm), penultimate length (Pel, cm), peduncle 

Fig. 1 The geographical location of the study area (A), and average 2 year wind rose plot (B) and climatic parameters (C)
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length (PL, cm), number of nodes (NFN), plant height 
(PH, cm), lodged area (LA, %), lodging score index (LS), 
and crop angle of inclination (CAI).

Traditional method
To determine whether the wheat plots were lodged (L) or 
healthy (H) in the field, the CAI was measured from the 
lodged area (LA [0–100%]) and the vertical (CAI [0–90°]) 
in each plot (Fig. 2A, B) [32, 33]. CAI was measured by a 
plumb bob and trigonometric computing. The string of 
the plumb bob was suspended from the top of the crop 
and when the tip of the plumb came in contact with the 
soil, an accurate calculation of the vertical height (hv) 
was possible. To determine the slant height (hsl), a plumb 
bob was used for lodged plants. CAI was then estimated 
from the vertical via Eq. (1):

where hv is the vertical height, and hv is the slant height.

(1)θdegree = 90
o − Sin−1

hv

hsl

LA was also evaluated visually by a quadrant methodol-
ogy. In this approach, the LA % was examined in each of 
the four quadrants from the center of each plot and then 
sum to achieve the final LA for the plots. Figure  3A, B 
depict lodged and healthy subplots. In healthy plots, the 
traits were measured in three subplots (0.25  m2) whereas, 
for lodged plots, the number of subplots was increased 
to 4–8 for accounting for spatial heterogeneity in each 
lodged patch.

A normalized lodging score index (LS [0–1]) was esti-
mated that merges LA and CAI for defining the sever-
ity classes of lodging and healthy (Fig.  3B and Eq.  2). 
The plot was labeled as H (LS = 0.0) if no lodging was 
observed. In the presence of lodging, wheat plots were 
classed as very severely lodged (VSL) (0.61 < LS ≤ 1.0), 
severely lodged (SL) (0.31 < LS ≤ 0.60), moderately lodged 
(ML) (0.16 < LS ≤ 0.30), low lodged (LL) (0.06 < LS ≤ 0.15) 
and Upright (0.0 < LS ≤ 0.05).

(2)LS =
LA

100
×

CAL

90
o

Table 1 Some physical and chemical soil properties of the wheat field

Years Depth (cm) Available K 
(mg  kg−1)

Available P 
(mg  kg−1)

pH EC (dS  m−1) Soil texture Sand (%) Silt (%) Clay (%) OC (%) Total N (%)

2018–2019 0–30 125 8.3 8.4 0.97 Clay loam 25 44 31 0.76 0.09

30–60 125 2.2 8.5 1.16 Clay loam 26 44 30 0.62 0.07

2019–2020 0–30 127 9.1 8.3 0.93 Clay loam 24 45 31 0.79 0.09

30–60 122 3.2 8.4 1.03 Clay loam 26 43 31 0.67 0.07

Fig. 2 Measurement of crop angle of inclination (A) and presentation of various lodging stages (B)
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where LS is the lodging score index, LA is the lodged 
area, and CAI is the crop angle of inclination.

To measure other traits, a total of 20 plants were iso-
lated from each plot. Traits PH, NFN, IL1, IL2, ID1, ID2, 
and SA were measured by using a digital caliper.

Image processing
A basic handheld phenocart was equipped with a Canon 
SX540HS camera. The phenocart stood 2.1  m tall. The 
phenocart was equipped with a 1 m long L-shaped metal 
rod. The open-lens camera was 2  m above the ground 
and positioned on an inverted L-shaped metal pole. The 
images were captured during the pre-physiological stage. 
In addition, images were captured with the camera’s 
Scene Intelligent Auto mode for two consecutive days 
from 10:00 AM to 2:00 PM. when the sky was entirely 
sunny. Consequently, no color correction was made to 
the photographs that were taken. To have consistent illu-
mination, the flash function was also disabled. All pho-
tos are taken in RGB and are stored in the 3240 × 4320 
pixels JPEG format. Machine learning models frequently 
employ photos [34].

A function for color threshold based on CIELAB 
color space (L × a × b) was defined in Python 3.7 soft-
ware. Cropped RGB images were converted to L × a × b 
color space. The first channel, L, which runs from 
black (0) to white (+ 100), was left alone, while the sec-
ond channel, a, which runs from green (−  100) to red 
(+ 100), was cut in half and defined from 0 to + 100, 
and the third channel, b, which runs from blue (-100) 

to yellow (+ 100), was similarly cut in half and defined 
from 0 to + 100. The masking images were converted to 
binary format. The black pixels of the cool color range 
(from low light to dark green and blue) and the white 
pixels of the warm color range (from low light to dark 
red and yellow) are served by this strategy [34]. Finally, 
for each design, the black-to-white color ratio was cal-
culated and saved in a text file as an indication of the 
lodged area (LA).

To measure other traits based on image processing, a 
total of 20 plants were isolated from each plot and they 
were divided into components according to Fig. 4 from 
the location of the node. Traits PH, NFN, IL1, IL2, ID1, 
ID2, and SA were measured by using image processing. 
For this purpose, inspired by the modified method of 
Leon et al. [35], a wooden box was made with dimen-
sions 50 × 50  cm, height 60  cm, thickness of 16  mm, 
with 5 floors, and a distance of 10  cm between them. 
The floors were separated by a square wooden plate 
46 cm in length. The camera was mounted on a styro-
foam base at a 90° angle. A filament LED was used to 
create the light and installed at a 45° angle to the cam-
era. The inner surface of the box was completely cov-
ered with black Fabriano Paperboard to prevent light 
reflection. The samples were placed at a distance of 
10  cm from the Canon SX540HS camera lens with a 
resolution of 25 megapixels having the following set-
tings: sensor’s sensitivity to light (ISO): 400; shutter 
speed: 1.60; aperture: f 4; flash: Off; zoom: no zoom. 

Fig. 3 Presentation of the plot center and the healthy/lodged subplots in the field (A). Division of the plot into four quadrants Q1, Q2, Q3, and Q4 
(B). LA1, LA2, LA3, and LA4 are corresponding to the lodged area in each quadrant. In this scenario, H1 and H2 present the healthy subplots while L1 
to L6 are the lodged subplots. The CAI is estimated via averaging the CAI and LA calculated in the six lodged subplots and in each quadrant, 
respectively
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Python 3.7 was utilized to calculate a total of 11 vari-
ables of wheat lodging (Fig. 4) [23, 36].

To measure the trait SW, a total of 20 spikes were 
selected and then weighed, and their mean was reported 
as SW. After completing the drying process of the spikes 
at 70 °C for 48 h and separating the straw from the spikes, 
the GY of a single plant was calculated. To measure phe-
nological traits, DTH (50% of plot spikes appeared), DTF 
(50% of plants are in the flowering stage), and DTM were 
calculated. All measurements were taken using standard 
CIMMYT protocols [37].

Machine learning approaches
To predict the LS by input traits other than LA and CAI, 
random forest regression (RF), support vector machine 
(SVM), artificial neural networks (ANNs), and multiple 
linear regression (MLR) were used as described by Wang 
et  al. [38]. For this purpose, the experimental data were 
divided into two parts, 75% for training and 25% for test-
ing. The characteristics of experimental data are specified 
in Table 2. To compare the performance of various mod-
eling algorithms, several values including root mean square 

error (RMSE, Eq.  3), normalized root mean square error 
(nRMSE, Eq.  4), mean absolute error (MAE, Eq.  5), and 
determination coefficient  (R2, Eq.  6), were estimated by 
using the testing data set. The predictive performance of 
RF, SVR, ANN, and MLR methods depends on the adjust-
ment of the optimal values of user-defined parameters. To 
find the optimal value of different user-defined parameters, 
a large number of trials were conducted using a variety of 
machine learning algorithms to compare the values of [root 
mean square error (RMSE), relative absolute error (RAE), 
mean absolute error (MAE), root relative square error 
(RRSE), and correlation coefficient (CC)] with test datasets. 
Therefore, these optimal values for our data set were pro-
vided in Table 3.

(3)RMSE =

√

∑n
i=1

(Oi − Pi)
2

n

(4)nRMSE =

(

RMSE

Xmax − Xminormean

)

∗ 100

(5)MAE =
1

n

∑n

i=1
|Oi − Pi|

Fig. 4 Graphical illustration of morphology traits measured in wheat 
plants

Table 2 Characteristics of the training and testing data set

LS Lodging score index or LS, PH plant height, IL1 internode length 1, IL2 internode length 2, PeD penultimate diameter

Variables Input parameters Training data Testing data

Min Max Mean St. dev Min Max Mean St. dev

Independent PH 73.6 127.4 102.225 12.952 72.6 122.4 102.542 12.039

PeD 2.24 5.65 4.02 0.592 2.45 5.34 4.052 0.598

IL1 4.0 11.6 7.632 1.836 4.0 11.6 7.654 1.683

IL2 8.4 18.3 13.059 2.139 8.4 18.3 13.074 1.956

Dependent LS 0.0 0.842 0.288 0.263 0.0 0.80 0.272 0.257

Table 3 The optimal values of user-defined parameters for RF, 
SVR, ANN, and MLR algorithms

LS Lodging score index, PH plant height, IL1 internode length 1, IL2 internode 
length 2, PeD penultimate diameter

Classifiers used Classifiers used

Multilinear regression (MLR) PH, PeD, IL1, IL2

Neural network (ANN) Learning rate = 0.2, Momentum = 0.1, 
Iteration = 2000, Hidden layer = 3–9–8

Random forest (RF) K = 2, M = 4, I = 100

Support vector regression (SVR) Kernel = rbf, Gamma = 0.004, C = 0.1
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where n is the number of data, Oi is the observed values, 
Pi is the predicted values, Xmax is the maximum data, 
Xmin is the minimum data, and the bar denotes the mean 
of the feature.

Statistical analysis
Advanced statistical analysis was used to evaluate and 
compare the diversity between Iranian wheat accessions. 
Box plot was drawn using ggplot2, dplyr, and ggpubr 
packages in R 4.3.1 software. Correlation diagrams were 
also drawn using corrplot and rcolorbrewer packages in 
R 4.3.1 To categorize wheat accessions, cluster analysis 
and heat map were implemented using the gplots, den-
dextend, and d3heatmap packages in R 4.3.1 To reveal 
the distribution of wheat traits and genotypes, principal 
component analysis (PCA) was accomplished using the 
factoextra packages in R 4.3.1 Machine learning methods 
(ANN, SVR, and RF) were run using writexl, E1071, ithir, 
caret doparallel, randomforest and neuralnet packages in 
R 4.3.1.

(6)R2 =

∑n
i=1

(

Oi − O
)

−
(

Pi − P
)

√

∑n
i=1

(

Oi − O
)2

−
(

Pi − P
)2

Results
Descriptive findings
Descriptive data on lodging-related traits of wheat acces-
sions are shown in Fig.  5. Minimum and maximum 
lodging area (LA), crop angle of inclination (CAI), and 
lodging index (LS) in cultivars and landraces were 64.4 
and 100%, 69.3 and 79.2°, 0.49 and 0.84, respectively. As 
a result, the cultivars have a less lodging rate when com-
pared to native landraces. Cultivars had lower height, PL, 
PeL, IL1, and IL2, while the stem diameter of their node 
was larger than native populations. Phenological traits 
including DTH, DTF, and DTM were lower in cultivars 
than landraces. Moreover, cultivars appeared superior in 
terms of spike weight and area, and grain yield.

Trait correlations
The results around the correlation of lodging-related 
traits were shown in Fig.  6. The lodging index had the 
highest positive correlation with LA (r = 0.96**), fol-
lowed by CAI (r = 0.95**), PH (r = 0.78**), NFN (r = 0.71**), 
IL1 (r = 0.70**), and IL2 (r = 0.63**). The lodging index 
also presented the highest negative correlation with 
PeD (r = − 0.48**), followed by ID1 (r = − 0.41**) and ID2 
(r = −  0.40**). These observations reveal that the higher 
the lodging index, the lower the grain yield (r = − 0.26**).
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Fig. 5 Box-plot presentation of the distribution for 19 lodging traits in Iranian wheat cultivars landraces under well-irrigated conditions. 
Abbreviations: Lodged area or LA (A), crop angle of inclination or CAI (B), lodging score index or LS (C), plant height or PH (D), number of nodes 
or NFN (E), peduncle length or PL (F), penultimate length or Pel (G), internode length 2 or IL2 (H), internode length 1 or IL1 (I), peduncle diameter 
or PD (J), penultimate diameter or PeD (K), internode diameter 2 or ID2 (L), internode diameter 1 or ID1 (M), days to heading or DTH (N), days 
to flowering or DTF (O), days to maturity or DTM (P), spike weight or SW (Q), spike area or SA (R), and grain yield or GY (S)
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Principal component analysis (PCA)
The results of PCA showed that the first, second, and 
third components justified 44.4, 12.6, and 9.8% of the 
total variance, respectively. Overall, the first two compo-
nents accounted for 66.8% of the total variance (Fig. 7A). 
According to Fig. 7A, the traits located in box a (LS, LA, 
CAI, PH, etc.) had the highest significant, positive corre-
lation with the PC1. The traits located in the box b (ID1, 
ID2, SW, GY, etc.) had a significant, positive correlation 
with the PC2 and a significant, negative correlation with 
the PC1. Genotype-based PCA indicated that genotypes 
located in zone a had the highest lodging, genotypes 
located in the zone c had moderate to high lodging, geno-
types located in zone b had low lodging, and genotypes 

located in zone d had without lodging (Fig.  7B). From 
PCA, the highest yield was recorded in the accessions 
located in zone b had than others. Genotypes located in 
the b region had a lower lodging angle (6–15°). The rea-
son for placing the genotypes with the highest yield in 
this area can be due to the high spike weight (due to the 
thousand kernel weight and the grains number per spike), 
which causes the stem to have a small angle.

Clustering
Genotypes were classified into four groups based on heat 
map output. The most lodging-resistant genotypes were 
found in group A, which had a lodging score of zero or 
close to zero. These accessions are the same genotypes 

Fig. 6 Correlation coefficients between the traits in Iranian wheat cultivars and landraces. Lodged area (LA), crop angle of inclination (CAI), lodging 
score index (LS), plant height (PH), number of nodes (NFN), peduncle length (PL), penultimate length (Pel), internode length 1 (IL1), internode length 
2 (IL2), peduncle diameter (PD), penultimate diameter (PeD), internode diameter 1 (ID1), internode diameter 2 (ID2), days to heading (DTH), days 
to flowering (DTF), days to maturity (DTM), spike weight (SW), spike area (SA) and grain yield (GY)
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located in zone d in PCA analysis. Genotypes with a 
lodging score between 0 and 0.15% were located in group 
B. In the other two groups, wheat accessions with a high 
lodging index score have appeared. The lodging score in 
group D, which includes most native populations, was 
the highest and ranged from 0.6 to 1 (Fig. 8). Traits were 

divided into four groups: group 1 including LA, CAI, LS, 
PH, NFN, IL1, IL2, PL, and PeL; group 2 including DTH, 
DTF, and DTM; group 3 including ID1, ID2, PD, and 
PeD; group 4 including GY, SA, and SW (Fig. 8).

Fig. 7 Principal component analysis of Iranian wheat landraces and cultivars. Variable biplot for the traits (A) and individual biplot for 228 wheat 
genotypes (B). Lodged area (LA), crop angle of inclination (CAI), lodging score index (LS), plant height (PH), number of nodes (NFN), peduncle length 
(PL), penultimate length (Pel), internode length 1 (IL1), internode length 2 (IL2), peduncle diameter (PD), penultimate diameter (PeD), internode 
diameter 1 (ID1), internode diameter 2 (ID2), days to heading (DTH), days to flowering (DTF), days to maturity (DTM), spike weight (SW), spike area 
(SA) and grain yield (GY)
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MLR analysis
Stepwise regression analysis was accomplished to deter-
mine the importance of the studied traits in changes in 
lodging index. Due to the fact that the traits of LA and 
CAI include the lodging index, stepwise regression anal-
ysis was performed after the removal of these traits to 
identify other traits affecting lodging. From the results, 
plant height was the first trait that entered the regression 

equation and alone justified about 60.6% of the changes 
in lodging index. PeD, IL1, and IL2 were the next traits 
that entered the regression equation and together with 
grain weight explained about 66.4% of the changes in the 
lodging index (Table 4). To predict the grain yield using 
training and testing data, stepwise regression was per-
formed. The results showed that stepwise regression with 
 R2 = 0.686 and RMSE = 0.150 for training data and with 

Fig. 8 Hierarchical clustering and heatmap of Iranian wheat landraces and cultivars based on the wheat traits. Abbreviations: Lodged area (LA), 
crop angle of inclination (CAI), lodging score index (LS), plant height (PH), number of nodes (NFN), peduncle length (PL), penultimate length (Pel), 
internode length 1 (IL1), internode length 2 (IL2), peduncle diameter (PD), penultimate diameter (PeD), internode diameter 1 (ID1), internode 
diameter 2 (ID2), days to heading (DTH), days to flowering (DTF), days to maturity (DTM), spike weight (SW), spike area (SA) and grain yield (GY)
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 R2 = 0.580 and RMSE = 0.166 for testing data could pre-
dict the lodging index (Fig. 9A,  A׳).

Machine learning approaches
To predict the lodging index using input data, three dif-
ferent methods including RF, SVR, and ANN were 
compared based on two evaluation parameters  R2 and 
RMSE. Artificial neural network (ANN) with  R2 = 0.769 
and RMSE = 0.126 for training data and  R2 = 0.731 and 
RMSE = 0.134 for testing data could predict the amount of 
lodging index well (Fig. 9B,  B׳). The SVR method could not 
have a good estimate of the lodging index and was not able 
to predict the genotypes that had a zero lodging index. In 
this method,  R2 = 0.693 and RMSE = 0.146 were obtained 
for training data and  R2 = 0.590 and RMSE = 0.163 for test-
ing data (Fig. 9C,  C׳). The RF method was able to have a 
good estimate of the lodging index when compared to 
other machine learning models, so it was able to predict 
accurately genotypes that had a zero lodging index. This 
method with  R2 = 0.887 and RMSE = 0.091 for training data 
and  R2 = 0.768 and RMSE = 0.124 for testing data was able 
to predict the lodging index favorably (Fig. 9D,  D׳).

Comparing MLR, ANN, SVR, and RF models for predicting 
LS
Comparison of MLR, ANN, SVR, and RF methods 
showed that in all models, based on both training and 
testing data, the predicted values were in the range 
of ± 25% error line. In the RF method, more samples were 
found in the range of ± 25% error line. The RF method 
was determined as the best model compared to other 
methods due to the high  R2 and low nRMSE for training 
and testing data. MLR, ANN, SVR, and RF models with 
 R2 values including 0.686, 0.769, 0.691, and 0.887 and 
nRMSE values including 17.82, 14.97, 17.34, and 10.81 
for training data, respectively, as well as with  R2 values 
including 0.580, 0.731, 0.590, and 0.768 and nRMSE val-
ues including 20.75, 16.75, 20.37, and 15.50 for test data, 
respectively (Figs.  10, 11). Figure  12 shows the changes 
in the lodging index of actual and predicted values using 
training and testing datasets by MLR, ANN, SVR, and 
RF methods. Overall, our observations suggested that RF 

predicts actual data better than other algorithms (Fig. 12; 
Table 5).

Discussion
Image processing analysis has appeared as an innova-
tive method, which permits a high number of plant 
morphology properties to be monitored [39]. By using 
this approach, you can optimize the process and make 
it straightforward; analyze large amounts of data at high 
speeds; prevent the sample from being destroyed; and 
analyze data at low costs [40]. Further, this approach can 
be used to explore possible homonyms and synonyms in 
a variety of assays, such as agronomic ones [41].

Diversity in Iranian wheat accessions uncovered that 
the cultivars have less lodging rate when compared to 
the native landraces due to lower DTH, DTF, and DTM, 
and higher stem diameter and grain yield. Stem diam-
eter, especially in the lower internodes, explains 55% of 
the variance in lodging index [42], thus it is regarded as 
a key parameter for enhancing lodging resistance due to 
more lignin, cellulose, and water-soluble carbohydrates. 
An increase in lower internode diameter can decrease 
tillers per unit area and eventually grain yield [43]. 
Therefore, the association between grain yield and stem 
structure requires to be appropriately explored in wheat 
accessions. The relationship between phenological traits 
and lodging suggests that an increase in DTH, DTF, and 
DTM can lead to further growth, which in turn, weighs 
wheat down and cause lodging event [44, 45].

From trait correlations, lodging was found to be 
directly linked with plant height and other stem traits 
[46]. In facts, stem properties and their composition 
remarkably contribute to crop resistance to stem bending 
[4, 47]. As observed, the correlation between the lodg-
ing index and ID1 was slightly higher than ID1, suggest-
ing that the first internode is more important for wheat 
resistance to lodging. In justifying this association, we 
must point out that the first internode harbors nearly 
twice the material strength as the second internode 
[48]. In addition to the irreversible bending of the stem, 
the displacement of the root anchorage is a critical ele-
ment in lodging. Anchorage failure is influenced by low 
stem strength, root traits, and soil structure [49], and a 

Table 4 Stepwise regression analysis for wheat lodging score index as the dependent variable

LS Lodging score index, PH plant height, IL1 internode length 1, IL2 internode length 2, PeD penultimate diameter

Step Entered variable Variables in model Partial  R2 Model  R2 Collinearity (VIF)

1 PH PH 0.606 0.606 1.207

2 PeD PH, PeD 0.032 0.638 1.250

3 IL1 PH, PeD, IL1 0.016 0.654 2.588

4 IL2 PH, PeD, IL1, IL2 0.010 0.664 4.576
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weakness in any of these can contribute to lodging sus-
ceptibility. Therefore, for characterizing of wheat acces-
sions in lodging resistance, it is highly suggested that 

both root and stem characteristics should be evaluated. 
Berry et  al. [50] observed that a slight increase in root 
anchorage and stem strength can reduce lodging risk. 
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Fig. 9 Predicted and measured lodging score index of wheat accessions using various regression methods: Scatter plot of predicted and measured 
lodging score index in training and testing stage of MLR (A and A׳), ANN (B and B׳), SVR (C and C׳) and RF (D and D׳)



Page 14 of 18Rabieyan et al. Plant Methods  (2023) 19:109

In line with our observations, Tripathi et  al. [42] indi-
cated that lodging resistance negatively is associated with 
spike area and weight. Thus, a decrease in spike area and 
weight of wheat genotypes can reduce lodging risk, and 

these genotypes are recommended as parents for breed-
ing programs to improve lodging resistance [48].

Previous reports already utilized various algorithms 
in the machine learning area for estimating biomass and 
related traits [22, 26–31, 51]. However, it remains unclear 
whether these algorithms are suitable to predict wheat 
lodging in the field. The current work was focused on 
comparing MLR with RF, ANN, and SVR for estimating 
lodging of Iranian wheat accessions in the field.

The RF algorithm harbored lower RMSE and higher 
 R2 values than the ANN and SVR algorithms for lodging 
estimation, recommending that RF approach provides a 
precise estimation of wheat lodging. In this case, mtry 
determines the specific size of the subset. In comparison 
to SVR and ANN, this method performs fairly well [38]. 
Both training and testing datasets showed similar robust-
ness to RF, and ANN showed better robustness than 
SVR. Random Forest models have a slightly higher gen-
eralization capability than ANN models, which behave 
relatively unpredictably when used with input data dif-
ferent from those used in training [52]. All variables are 
split according to the best split in the standard regression 
tree. Unlike this strategy, RF splits each node according 
to the best of a set of variables chosen randomly based 
on the node’s location. RF achieved equivalent robustness 
(i.e., relative RMSE %) with ANN in both the testing and 
training datasets, and exhibited better robustness than 
SVR, as reported by Wang et al. [38]. Albeit the RF algo-
rithm seems to be contradictory, it carries out relatively 
well in contrast to other machine learning models. Simi-
larly, Wang et al. [38] achieved satisfactory findings when 
measuring biomass values in the field via RF. Most of the 
Lodging-related traits in this study are correlated. It is 
worth noting, RF is not susceptible to the linear associa-
tion between two explanatory traits [53]. This is valuable 
in wheat lodging modeling since it is commonly difficult 
to decide which trait to remove when two (or more) traits 
are associated with each other [54].

Artificial neural network demonstrated weaker per-
formance in testing than in training. This is because of 
the fact that RF and SVR algorithms are appropriate for 
a small amount of sampling data, while ANN is usually 
exerted on a large amount of sampling data [38]. Another 
cause for this is possible that the learning capability is too 
strong throughout the training, and therefore the model 
cannot reveal the hidden rules of samples finally weaken 
prediction capability.

This study shows wheat lodging was more accu-
rately predicted when four traits were combined with 
RF regression algorithms. For the first time, we pro-
pose the use of RF regressions for lodging imaging pro-
cessing. However, optimizing the modeling algorithms 
could improve the prediction accuracy of the method. 
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Fig. 12 Variation in the predicted values of lodging using various regression methods in contrast to the actual value of lodging score index 
(A = training, B = testing)

Table 5 Details of parameters used for evaluating yield using MLR, ANN, SVR and RF on training and testing data sets

Models Training Testing

R2 RMSE MAE R2 RMSE MAE

Multilinear regression (MLR) 0.686 0.150 0.119 0.580 0.166 0.130

Neural network (ANN) 0.769 0.126 0.089 0.731 0.134 0.095

Random forest (RF) 0.887 0.091 0.067 0.768 0.124 0.094

Support vector regression (SVR) 0.693 0.146 0.109 0.591 0.163 0.122
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In previous studies, different lodging parameters have 
been monitored at different growth stages using a single 
algorithm based on remotely sensed and image process-
ing data [55]. Using non-destructive monitoring and pre-
cise modeling methods, this research contributes to the 
establishment of management strategies for non-destruc-
tive monitoring.

Conclusion
Lodging remarkably decreases the quality/quantity of 
wheat growth and yield. The lodging index had the high-
est positive correlation with LA (r = 0.96**), followed by 
CAI (r = 0.95**), PH (r = 0.78**), NFN (r = 0.71**), IL1 
(r = 0.70**), and IL2 (r = 0.63**). To estimate lodging in 
a non-destructive and rapid manner, various machine 
learning predictive algorithms were employed. In order 
to predict lodging in wheat, independent variables PH, 
PeD, IL1 and IL2 were used in model training. The find-
ings revealed that the RF algorithm provided a more 
accurate estimate  (R2 = 0.887 and RMSE = 0.091 for train-
ing data and  R2 = 0.768 and RMSE = 0.124 for testing 
data) of wheat lodging. The RF algorithm was found as 
relatively robust as ANN and more robust than SVR.

One of the most important limitations of this research 
is the lack of sufficient funding to use an unmanned aerial 
vehicle (UAV) to take images of different genotypes of 
wheat on a larger scale and check the results with digital 
and manual imaging methods of this study.

In summary, this study provides evidence of the 
potential of high-resolution Image processing data in 
estimating CAI as a measure of lodging severity assess-
ment, which to the best of our knowledge, has not been 
documented in the literature. This study proposes a new 
workflow pipeline for wheat lodging assessment in high-
throughput plant phenotyping scenarios. It can pro-
vide important methodological reference for large-area, 
high-efficiency and low-cost wheat lodging monitoring 
research, and provide decision support for agricultural 
insurance and other fields.
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