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Abstract 

Background  Forest aboveground biomass (AGB) is not only the basis for estimating forest carbon storage, but also 
an important parameter for evaluating forest carbon cycle contribution and forest ecological function. Data saturation 
and fewer field plots limit the accuracy of AGB estimation. In response to these questions, we constructed a point-
line-polygon framework for regional coniferous forests AGB mapping using field survey data, UAV-LiDAR strip data, 
Sentinel-1 and Sentinel-2 imageries in this study. Under this framework, we explored the feasibility of acquiring the 
LiDAR sampling plots using the LiDAR sampling strategy consistent with the field survey, and analyzed the potentials 
of multi-scale wavelet transform (WT) textures and tree species stratification for improving AGB estimation accuracy 
of coniferous forests in North China.

Results  The results showed that UAV-LiDAR strip data of high density point clouds could be used as a sampling tool 
to achieve sample amplification. Experimental comparison results showed that the Sentinel-based AGB estimation 
models incorporating the multi-scale WT textures and SAR data performed better, and the model based on coniferous 
forests tree species significantly improved the performance of AGB estimation. Additionally, the accuracy comparison 
using different validation sets indicated that the proposed LiDAR sampling strategy under the point-line-polygon 
framework was suitable for estimating coniferous forests AGB on a large area. The highest accuracy of AGB estimation 
of larch, Chinese pine and all coniferous forests was 74.55%, 78.96%, and 73.42%, respectively.

Conclusions  The proposed approach can successfully alleviate the data signal saturation issue and accurately 
produce a large-scale wall-to-wall high-resolution AGB map by integrating optical and SAR data with a relative small 
number of field plots.
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Highlights 

1.	 The LiDAR sampling strategy consistent with the field survey under the point-line-polygon framework for wall-
to-wall large-scale coniferous forests AGB mapping combining limited field plots, UAV-LiDAR strip data, and 
multi-sensor satellite imagery is proposed.

2.	 Build and compare different AGB estimation models of coniferous forests under stratification of tree species and 
non-stratification.

3.	 Analyze the improvement of AGB estimation accuracy and the reduction of the data saturation issue by incor-
porating the multi-scale wavelet transform features of Sentinel-1 and Sentinel-2 data.

Keywords  UAV-LiDAR strip data, Point-line-polygon framework, LiDAR sampling plots, Multi-scale wavelet transform, 
Aboveground biomass

Background
Forest ecosystem, as an indispensable part of terrestrial 
ecosystem, has strong carbon sink capacity and plays an 
irreplaceable role in carbon cycling [29, 38, 51]. As the 
basis of estimating forest carbon storage, forest biomass 
has been listed as a necessary parameter for monitoring 
forest carbon sink capacity and assessing carbon budget 
[20, 40]. According to the 9th Chinese Continuous Inven-
tory of National Forest Resources Statistics [1], the total 
forest area of China is about 2.204462 × 108 ha, account-
ing for 22.96% of the country’s total area. Inner Mongolia 
Autonomous Region, as one of the important forest zone 
in China, has about 2.61485 × 107  ha of forest, ranking 
first in China. And the coniferous forests cover an area 
of about 5.6533 × 106 ha, accounting for 32.62% of Inner 
Mongolia’s total forest area. Therefore, it is of great sig-
nificance to accurately estimate the biomass of conifer-
ous forests in this region for assessing carbon storage in 
China.

Traditionally, forest aboveground biomass (AGB) is 
estimated with allometric growth equation by meas-
uring tree height and diameter at breast height in field 
survey, which could provide the accurate result at plot 
scale [28, 52]. This approach is time-consuming and 
laborious and impossible to map AGB distribution 
accurately, especially on a large area [37]. Remote sens-
ing technique, as an objective, continuous and repeata-
ble observation method, has been widely used in forest 
AGB estimation [32, 36, 39, 50, 55]. The common meth-
ods focus on statistical models, that is, the estimation 
model is established combining field-measured plots 
and variables derived from remote sensing data, and 
then extrapolated to the whole study area [31]. Under 
this method, the number and distribution of the field 
plots have a great impact on the AGB estimation accu-
racy. Although multi-spectral sensors have been widely 
used in forest AGB estimation [3, 11, 14, 39, 41], spec-
tral saturation limits estimation accuracy [53, 54]. As 

one type of active remote sensing sensors, Synthetic 
aperture radar (SAR) has certain penetrability to for-
est canopy, and is sensitive to water content in vegeta-
tion and not affected by clouds [17, 35]. Although SAR 
can improve the saturation value of AGB, it still cannot 
completely solve this problem [24, 34]. Light Detection 
and Ranging (LiDAR), as another active sensor, is not 
limited by data saturation and can accurately describe 
the three-dimensional structure information of forests 
[12, 23]. It is the most effective and accurate remote 
sensing technology for estimating forest AGB at pre-
sent [16]. However, due to its high cost of data acqui-
sition, airborne LiDAR data are limited to map forest 
AGB in a large area [42].

Progress has been made by integrating multi-sensor 
remote sensing data for producing a wall-to-wall for-
est AGB map on a large-scale [6, 10, 26, 33, 45, 49]. An 
approach called a point-line-polygon framework, in 
which LiDAR data serves as intermediate data to link 
field plots with satellite imagery, has been applied to 
forest biophysical attributes estimation at a large-scale, 
such as forest volume stock, tree height and forest bio-
mass [9, 48]. The point-line-polygon framework is mainly 
divided into two stages. The first stage is to establish the 
LiDAR-based model to relate field plots and LiDAR met-
rics, and estimate forest biophysical attributes through-
out the LiDAR coverage. Second stage extrapolated forest 
biophysical attributes to the broader coverage using the 
equation between the LiDAR derived attributes and sat-
ellite imagery. LiDAR data are used as intermediate sam-
ples to extrapolate AGB estimation from plot-level to a 
wall-to-wall coverage. Under the point-line-polygon 
framework, the advantages of the integration of LiDAR 
data and multi-sensor imagery can be synergistically uti-
lized, and LiDAR can be used as a sampling tool to allevi-
ate the problem of limited field plots through appropriate 
sampling. The point-line-polygon framework has yielded 
accurate results for forest parameters on a large-scale. 
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However, there are rarely researches on the construc-
tion of the point-line-polygon framework by integration 
of airborne LiDAR strip data and multi-source imagery, 
especially for coniferous forests AGB estimation.

Features extracted from multi-sensor data are the 
foundation of AGB modelling. In addition to features 
reflecting spectral information such as spectral reflec-
tance and vegetation index, remote sensing images con-
tain abundant texture information, including spatial 
domain texture and frequency domain texture [8, 15, 30, 
31]. Many studies have shown that spatial domain tex-
tures extracted from both optical and SAR data could 
help improve the estimation accuracy of forest AGB [22, 
31, 43, 44]. The spatial domain texture is represented by 
the grayscale distribution of pixels and their surround-
ing spatial neighborhoods, while the frequency domain 
texture is to transform the image into frequency domain 
and derive its texture from the spectrum. The frequency 
domain texture can be obtained by two-dimensional Fou-
rier transform or two-dimensional wavelet transform 
(2-D WT), which have been applied in classification and 
estimation of forest parameters with good results [4, 5, 
18, 47]. However, the potential of frequency domain fea-
tures for forest AGB estimation is rarely discussed.

Here, we construct a point-line-polygon framework 
for large-scale coniferous forests AGB mapping combin-
ing limited field plots, Unmanned Aerial Vehicle LiDAR 
(UAV-LiDAR) strip data, optical and SAR imagery. The 
specific objectives of the study are as follows: (a) to evalu-
ate the feasibility of estimating coniferous forests AGB 

using the proposed LiDAR sampling strategy under the 
point-line-polygon framework; (b) to build and compare 
the AGB estimation models of coniferous forests tree 
species and all coniferous forests; (c) to analyze the effect 
of AGB estimation accuracy by incorporating the multi-
scale WT textures.

Results
LiDAR strip coverage AGB estimation
The LiDAR-based AGB models of the first stage were 
established by using field plots and LiDAR metrics, 
and assessed by the leave-one-out cross-validation 
method. Table  1 summarizes the results of the opti-
mal combination of variables, modelling and valida-
tion for AGB estimation models of the larch, Chinese 
pine and non-stratification. For both stratification and 
non-stratification situations, the accuracies of these 
LiDAR-based AGB estimation models were high. The 
determination coefficients R2 of the LiDAR-based models 
were all higher than 0.8, and the correlation coefficients 
r between the estimated AGBLiDAR and the field AGB 
were also all greater than 0.8. All the LiDAR-based AGB 
models based on tree species perform better than the one 
under non-stratification, indicating that stratification of 
tree species was effective in improving the accuracy of 
AGB estimation. Among the models based on tree spe-
cies, the accuracy of the larch AGB model with only two 
variables D09, Hmean (R2 = 0.923, RMSE = 13.92 Mg/ha, 
MAE = 10.88  Mg/ha, rRMSE = 12.21%, r = 0.953) is the 
highest.

Table 1  The performance measures of LiDAR-based AGB models built by UAV-LiDAR metrics

Category Selected variables R square RMSE (Mg/ha) rRMSE (%) MAE (Mg/ha) r

Larch D09, Hmean 0.923 13.92 12.21 10.88 0.953

Chinese pine D10, Hmean, G.F, I.ske 0.859 19.11 12.49 14.04 0.913

Non-stratification Hmax, I05, H.kur, G.F, I20 0.800 24.69 18.43 19.69 0.877

Fig. 1  The scatterplots of field AGB and LiDAR estimated AGB
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The performance of the models can be explained with 
the scatterplots showing the relationships between the 
estimated AGBLiDAR and field AGB (Fig. 1). In three sce-
narios, there is almost no underestimation in the higher 
AGB range, which confirms that LiDAR could be an 
effective tool for plot sampling and ensures the accu-
racy of subsequent LiDAR sampling plots. Moreover, 
compared with the tree species models, the AGB model 
under non-stratification has a larger residual when AGB 
ranges are 0–70  Mg/ha and > 200  Mg/ha. These results 
also illustrate the importance of proper stratification 
based on tree species for improving AGB estimation.

LiDAR sampling by visual interpretation
The 25  m  *  25  m LiDAR sampling plots of 115 larch, 
134 Chinese pine and 6 other coniferous forests were 

established by visual interpretation method (Fig. 2). The 
size, orientation and layout principles of these plots were 
consistent with those of field plots. Table  2 presents a 
summary of the AGBLiDAR of LiDAR sampling plots.

Forest AGB modelling using Sentinel images
The results of Sentinel-based AGB models using RF algo-
rithms in four scenarios were compared by two validation 
sets (Tables  3, 4). The evaluation results with LiDAR-
based AGB validation set showed that the Sentinel-based 
AGB model all had higher overall accuracy in A, B, C and 
D experiments, indicating the proposed LiDAR sampling 
strategy under the point-line-polygon framework was 
suitable for coniferous forests AGB estimation.

The highest accuracy was 74.55%, 78.96% and 73.42% 
for larch, Chinese pine and non-stratification using 
LiDAR-based AGB validation set. The evaluation 

Fig. 2  The distribution of the LiDAR sampling plots
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accuracy of Sentinel-based AGB model using field-based 
AGB validation set was lower than that of LiDAR-based 
AGB validation set (Table 4), which was due to the accu-
mulation of errors during the up-scaling process. How-
ever, the overall accuracy evaluated by field-based AGB 
validation set was also good, implying the applicability of 

the proposed LiDAR sampling strategy and effectiveness 
of the constructed point-line-polygon framework to map 
coniferous forests AGB over large area.

No matter stratification or not, the results illustrate that 
the Sentinel-based AGB models incorporated SAR data 
(experiment C and D) have achieved a higher accuracy 

Table 2  Summary of the AGBLiDAR of LiDAR sampling plots (Mg/ha)

Category Number of samples Range of AGB Mean AGB Standard 
deviation

Larch 115 11.34–192.90 83.28 44.29

Chinese pine 134 24.71–269.26 143.80 47.11

Other coniferous forests 6 10.30–145.15 85.40 54.71

Non-stratification 255 10..30–269.26 115.13 55.06

Table 3  The performance measures of AGB estimation models

Experiment (category) Selected variables R square

A (larch) B6, Cab, CIre, VARI, S2REP 0.598

B (larch) Clre, Cab, a_1_B11, a_3_B4, d_1_B3 0.626

C (larch) Clre, Cab, a_1_B11, d_1_B3, VV_mean 0.670

D (larch) Cab, a_1_B11, d_1_B3, VV_mean, d_2 _B1_sar 0.685

A (Chinese pine) B6, LAI, FVC, MidIR, S2REP 0.563

B (Chinese pine) B8a, Cwc, FVC, MidIR, a_3_B8 0.573

C (Chinese pine) B6, LAI, FVC, MidIR, VH_var 0.623

D (Chinese pine) LAI, FVC, MidIR, VH_var, a_1 _B1_sar 0.657

A (non-stratification) B11, Cab, CIre, Cwc, MidIR 0.516

B (non-stratification) B12, II, FVC, Cab, h_1_B4 0.532

C (non-stratification) Cwc, FVC, MidIR, VH, VH_var 0.603

D (non-stratification) Cwc, FVC, MidIR, VH_var, a_1_B1_sar 0.632

Table 4  A summary of evaluation results of AGB models

Experiment (category) LiDAR-based AGB Field-based AGB

RMSE (Mg/ha) MAE (Mg/ha) rRMSE (%) r RMSE (Mg/ha) MAE (Mg/ha) rRMSE (%) r

A (larch) 37.39 31.80 32.80 0.777 40.46 32.37 35.49 0.712

B (larch) 35.51 30.42 30.15 0.677 39.39 31.60 34.56 0.607

C (larch) 31.46 27.19 27.17 0.785 34.79 29.03 30.52 0.733

D (larch) 29.01 25.53 25.45 0.790 32.60 27.02 28.61 0.739

A (Chinese pine) 41.85 35.09 27.61 0.424 44.69 38.65 29.21 0.425

B (Chinese pine) 39.88 32.95 26.32 0.505 43.52 35.95 28.44 0.482

C (Chinese pine) 34.24 28.46 22.59 0.636 38.21 32.48 24.98 0.604

D (Chinese pine) 31.88 26.44 21.04 0.710 36.13 30.28 23.61 0.673

A (non-stratification) 44.67 35.64 33.25 0.558 47.47 37.91 35.43 0.541

B (non-stratification) 42.23 33.96 31.43 0.620 45.97 37.82 34.31 0.580

C (non-stratification) 38.83 31.77 28.90 0.682 41.09 34.02 30.67 0.675

D (non-stratification) 35.71 29.65 26.58 0.732 38.37 31.71 28.64 0.719
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(Table 4) than the models established using optical image 
alone (experiment A and B). The incorporation of SAR 
data improved the accuracy of the models by about  7% 
in all three scenarios, which verified the improvement of 
AGB estimation accuracy by fusion of optical and SAR 
images. Moreover, the addition of WT texture improves 
the accuracy of AGB estimation (B > A, D > C), especially 
WT feature derived from SAR.

In stratification scenario, the incorporation of WT tex-
tures from optical data has little effect on improving the 
performance of the Chinese pine AGB model, but better 
effect on improving the accuracy of the larch AGB esti-
mation model (experiment A and B). However, the WT 
textures of SAR data have the opposite effect on Chinese 
pine and larch (experiment C and D). Among the WT 
textures, the approximate textures at one-level scale of 
optical data have the higher explanatory power for AGB 
estimation, and the WT textures of SAR data under VH 
polarization. Moreover, the Sentinel-based AGB estima-
tion models based on tree species have better perfor-
mance, which also confirms that the effectiveness of tree 
species stratification in improving the accuracy of AGB 
estimation.

By analyzing and comparing the scatterplots of the 
relationships between the estimated Sentinel-based AGB 
and LiDAR-based AGB (Fig. 3), it was found that in the 
four experiments, there are overestimation in the low 
AGB range (AGB < 50 Mg/ha) and underestimation in the 
high AGB range (AGB > 150  Mg/ha). With the addition 
of different types of features, the phenomenon of under-
estimation in the high AGB range are effectively allevi-
ated, which means that data saturation problem could be 
alleviated. For larch and non-stratification scenarios, the 
overestimation of low AGB range hardly improved.

The coniferous forests AGB spatial distribution map 
was acquired using the Sentinel-based AGB estimation 
models in D experiment (Fig. 4). According to the attrib-
utes of tree species types from the subcompartment of 
Wangyedian Experimental Forest farm, the larch, Chi-
nese pine and other coniferous forests regions were cal-
culated by using the AGB estimation models of larch, 
Chinese pine and non-stratification, respectively. Accord-
ing to the obtained AGB distribution map, there are more 
pixels in the range of 110–150 Mg/ha and 150–190 Mg/
ha. The distribution pattern of AGB values is similar to 
previous studies in [25, 50], that is, AGB values are lower 
in the northeastern and higher in the southern and east-
central regions.

Discussion
The feasibility of estimating forest AGB 
under the point‑line‑polygon framework
Large-scale, high-precision AGB estimation using remote 
sensing method is usually limited by the difficulty in 
acquiring a sufficient number of evenly distributed field 
plots. Under the constructed point-line-polygon frame-
work, the UAV-LiDAR strip data of high density point 
clouds could be used as a sampling tool for plot sam-
pling to effectively amplify the number of field plots and 
reduce the workload of field measurements [33, 36]. In 
this study, the evaluation results of the Sentinel-based 
AGB models by two validation sets show that the point-
line-polygon framework is suitable to estimate conifer-
ous forests AGB over large-area without extensive field 
measurements. The difference in accuracy obtained using 
the LiDAR validation set and the field-based validation 
set is the error accumulation in the up-scaling process. 
Under different experiments, the accuracy difference is 
between 2 and 4.5%, which also illustrates that the error 
introduced by this method is controllable. Moreover, the 
point-line-polygon framework can better coordinate with 
different data sources, which makes full use of the advan-
tages of different data sources to estimate AGB. The 
point-line-polygon framework provides a feasible pro-
cess for large-scale and high-precision AGB estimation, 
so as to produce a higher spatial resolution wall-to-wall 
AGB map of the whole study area. In the future, when 
the number of acquired LiDAR sampling plots is large 
enough, the deep learning algorithm could be considered 
to build AGB estimation model and explore its potential 
in improving the accuracy of AGB estimation.

UAV‑LiDAR plots sampling strategy
Sampling strategies usually include systematic and strati-
fied sampling. In systematic sampling, the sampling plots 
are evenly distributed, but different sampling schemes 
lead to large differences in results [2, 7]. In this study, the 
stratified sampling strategy was used to select the LiDAR 
sampling plots, which could meet the requirements of 
AGB modeling. Based on visual interpretation, LiDAR 
sampling plots of Chinese pine, larch and other conifer-
ous forests consistent with field plots were selected uni-
formly for subsequent AGB estimation. In this way, the 
workload related to classification is reduced. Moreover, 
compared with previous researches using all pixels or the 
fixed-size areas under different categories to complete 
AGB modeling of the second stage [27, 48], our method 
can ensure the consistency of plots in the two stages and 
reduce the error during the scale conversion process in 
the point-line-polygon framework.

The point cloud density of UAV-LiDAR data acquired 
is high (> 40/m2), which could provide finer tree structure 
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information, then the LiDAR-based AGB models estab-
lished achieve a high accuracy. Therefore, it has great 
potential to effectively amplify field plots and reduce field 
measurement. However, the LiDAR sampling method we 
used may limit the number of sampling plots selected. 
In the following research, the point cloud density would 

be thinned to obtain a point cloud density threshold 
that can ensure high accuracy of AGB estimation. Thus, 
in practice, the coverage area of UAV-LiDAR data can 
be expanded by reducing the point cloud density while 
keeping the cost unchanged, so as to obtain more LiDAR 
sampling plots that meet the requirements.

Fig. 3  The scatterplots of LiDAR-based AGB and Sentinel-based AGB on Sentinel-based AGB models. a, b, c and d represent experiment A, B, C and 
D, respectively
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Potential solution to reduce the data saturation problem
Data saturation in optical data is a critical problem that 
restricts the improvement of AGB estimation accuracy, 
especially in dense forests with higher AGB [25]. This is 
mainly because optical data only provide spectral and hori-
zontal spatial feature. Forest tree height, which represents 
the vertical structure of the forest stand, has been shown 
to reduce data saturation in AGB estimation [31, 46, 53]. 
LiDAR, Interferometric SAR and Polarimetric SAR Interfer-
ometry techniques have been utilized successfully to derive 
forest tree height variable. However, there are many signifi-
cant limitations in extracting large-scale tree height features 
when applied on a large-scale, including limited data avail-
ability, high cost, technical complexity and spatially discrete 
data characteristics. Many other approaches, such as strati-
fication and the use of multi-source remote sensing data [13, 
21, 28], have been studied to alleviate AGB saturation.

In this study, we conducted AGB modeling experiments 
from the aspects of tree species stratification, collabora-
tive optical and SAR data, and incorporating texture of the 
frequency domain. The results prove the positive impact of 
these methods on improving AGB estimation performance 
and alleviating data saturation. The spectral information of 
optical image can reflect the physiological and biochemical 
characteristics of forest canopy, and SAR the ability to pen-
etrate the forest canopy, and is sensitive to water content. 
Generally, the fusion of optical and SAR data refers to the 
synergy of spectral and backscattering features. In addition 
to these features, multi-scale WT textures are extracted 
from optical and SAR data for forest AGB estimation in this 
study, representing texture information in the frequency 
domain, which is different from that in the spatial domain. 
The results show that WT textures can improve the satura-
tion point, especially the WT features extracted from SAR. 

Fig. 4  Distribution of the coniferous forests AGB in the Wangyedian Farm, North China



Page 9 of 19Wang et al. Plant Methods           (2023) 19:65 	

Therefore, the proposed methods could overcome the limi-
tations of data acquisition and alleviate data saturation in 
AGB estimation, and are conducive to produce a wall-to-
wall high accuracy forest AGB map on a large-scale.

Conclusion
We have investigated the potential of the point-line-polygon 
upscaling framework integrating the UAV-LiDAR strip data, 
Sentinel-1 and Sentinel-2 imagery for estimating the conif-
erous forests AGB in the case study of the Wangyedian for-
est farm in North China. The UAV-LiDAR strip data acted 
as a bridge to link field plots with wall-to-wall coverage sat-
ellite imagery. And the results demonstrated that the UAV-
LiDAR data of high density point cloud can be used as a 
sampling tool to accomplish field plots augmentation based 
on the high-precision LiDAR-based AGB models built by 
the field plots and LiDAR metrics. The integration of Sen-
tinel-1, Sentinel-2 data and LiDAR sampling plots under the 
point-line-polygon framework could produce an accurate, 
reliable and high-resolution coniferous forests AGB map, 
suggesting the feasibility of this framework in estimating 
AGB. Furthermore, the incorporation of SAR data WT tex-
tures, and the use of stratification of coniferous forests tree 
species could significantly improve the AGB estimation per-
formance. Overall, this research provides a feasible way to 
reduce the data saturation problem of optical data and real-
ize an accurate AGB mapping on a large-scale by integrat-
ing different data sources. This suggests that the large-scale 
high-resolution mapping of forest AGB based on point-line-
polygon framework by integrating UAV-LiDAR strip data 
and space-bone satellite images has broad application pros-
pects, and will provide important support for carbon stor-
age assessment and dynamitic monitoring.

Materials and methods
Study area
This study was conducted in Wangyedian Experimental 
Forest Farm (Fig. 5), with a total area of 500 km2, located in 
the southwest of Horqin Banner, Chifeng City, Inner Mon-
golia Autonomous Region (118° 07ʹ–118° 33ʹE, 41° 29ʹ–41° 
49ʹN), China. The study area is mainly mountainous, with 
a north–south length of 28.1 km and an east–west length 
of 30.3 km. The area has average elevation of 800–1890 m, 
average annual temperature of 3.5–7.0  °C, and average 
annual precipitation of 300–500  m. The local climate is a 
temperate continental monsoon climate with cold and dry 
winters, and warm and rainy summers.

The major types of forest include coniferous plantations 
and secondary broadleaf forests, accounting for 55% and 
40% of the total forest, respectively. The coniferous planta-
tions mainly include larch (Larix gmelinii (Rupr.) Kuzen.), 
Chinese pine (Pinus tabuliformis Carr.), Scots pine (pinus 
sylvestre), and red pine (Pinus koraiensis Sieb. et Zucc.) And 

the secondary broadleaf forests mainly include birch (Bet-
ula platyphylla Suk.), aspen (Populus davidiana.), and elm 
(Ulmus pumila L.). Larch and Chinese pine account for 90% 
of the coniferous forests area, and are the main tree species 
of coniferous forests, which can represent the situation of 
the whole coniferous forests.

Data
Field data
Field survey was carried out in the study area from mid-
September to early October 2019. The systematic sampling 
control at forest farm level was used to arrange field plots. 
Firstly, Wangyedian Forest Farm were divided into 22 rec-
tangular areas of 4 km × 4 km according to the systematic 
sampling interval of 4 km, as shown in Fig. 5. Secondly, in 
each rectangular sampling area, a suitable local area that 
could represent the typical forest stand characteristics of 
the rectangular area was selected to arrange the field plots. 
This local area was composed of three 400 m × 600 m strips 
forming a herringbone area. A field plot was arranged in 
the overlapping area of the three strips, and one field plot 
was arranged in each of the three strips. According to this 
method, 4 field plots with the size of 25 m × 25 m were col-
lected in each rectangular area of 4 km × 4 km apart from 
the restricted access areas NO 3, 4, and 5.

Considering that the research object of this study was 
coniferous forests, the representative coniferous forests 
sample plots were selected in the herringbone region of 
the primary selection. According to the principle of uni-
form distribution, keeping away from roads and cover-
ing different forest ages as much as possible, a total of 
76 coniferous forests plots were selected in Wangyedian 
Forest Farm, including 42 Chinese pine (Pinus tabu-
liformis Carr.) plots, 30 larch (Larix gmelinii (Rupr.) 
Kuzen.) plots and 4 Scots pine (pinus sylvestre) plots. The 
Scots pine plots was classified in non-stratification. The 
specific plot distribution is shown in the Fig. 5.

During the field work, Real Time Kinematic (RTK) was 
used to accurately locate the corner and center points of 
the plot with an error of less than 20 cm. All the trees with 
DBH greater than 5 cm in the sample plot were measured 
to record DBH, tree height, crown width and other infor-
mation. The AGB of the field plots was calculated based on 
allometric growth equations of tree species. Table  5 pre-
sents a summary of the field estimated AGB.

LiDAR data
The UAV-LiDAR data were acquired from 15 to 30 
September 2019 using a RIEGL vux-1 LiDAR sensor 
mounted on a RC6-2000 UAV. The acquired UAV-LiDAR 
data covered 19 herringbone sampling areas, which 
are the herringbone areas selected in the field survey 
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described in "Field data" section. The UAV flight alti-
tude was 280  m above the ground and the flight speed 
was 4.7  m/s. For laser pulse, only the first return was 
recorded, and the overall point density was better than 

40  points/m2. The detailed parameters of UAV-LiDAR 
are shown in Table 6.

The preprocessing of LiDAR data included denois-
ing, point cloud classification, elevation normalization 

Fig. 5  Location of the study area, the distribution of the field plots and the acquisition area of UAV-LiDAR. (a) and (b) show the locations of Chifeng 
City and Wangyedian Forest Farm respectively. The true color image (c) is composed of three bands (red, green and blue) of Sentinel-2B data
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and intensity correction. The noise points were removed 
using the height threshold, then the point clouds after 
denoising were classified as ground and non-ground 
based on Digital Elevation Model (DEM) generated by 
ground point interpolation using irregular triangulation 
network algorithm. Point cloud normalization was com-
pleted based on DEM, which could remove the influence 
of topographic relief on elevation value of point cloud 
data. And point clouds with height > 0.2  m were classi-
fied as vegetation. Finally, since the point cloud data of 
UAV-LiDAR have an obvious intensity banding issue, the 
intensity correction was carried out on the normalized 
vegetation point cloud to reduce the error.

where IC is the corrected intensity, Iraw is the raw inten-
sity value, Ri is the range between sensor and target, 
Rref is the standard range (e.g. 1000 m) and θi is the scan 
angle.

Sentinel‑2 image
Two cloud-free Sentinel-2B Level-1C images covering 
the study area on September 17nd, 2019 were down-
loaded from the Copernicus Scientific Data Hub (CSDB, 
https://​scihub.​coper​nicus.​eu/). The Level-1C image is 
the Top-Of-Atmosphere reflectance product after ortho-
rectification and sub-pixel multispectral registration. 
In this study, Level-2A Bottom-Of-Atmosphere reflec-
tance products were obtained by atmospheric correc-
tion using the Sen2cor atmospheric correlation Processor 
(version 2.8.0). Then, in order to reduce the influence of 

(1)IC = Iraw
R2
i

R2
ref ∗ cosθi

mountainous terrain, the C model was used for terrain 
correction (2, 3). All images were resampled to 10 m of 
spatial resolution.

C = b/m, where m is slope and b is intercept of the regres-
sion equation derived from cos(i). sz is the solar zenith 
angle, sa is the solar azimuth angle, tz is the surface nor-
mal zenith angle or the terrain slope, and ta is the terrain 
azimuth angle.

Sentinel‑1 image
One Sentinel-1B Level-1 Single Look Complex (SLC) 
image in Interferometric Wide Swath (IW) mode cover-
ing the study area was acquired on September 25nd, 2019 
from the CSDB. The acquired image has a 5 m range by 
20  m azimuth spatial resolution in VV and VH polari-
zations and is in ascending mode with a mean incident 
angle of 37.6°.

The preprocessed steps of Sentinel-1 Level-1 SLC 
image included thermal noise removal, orbital correc-
tion, radiometric calibration, deburst, multi-looking, 
speckle filtering using the refined Lee sigma filter, terrain 
correction using a range-Doppler terrain correction with 
the SRTM 1Sec HGT DEM, effective scattering area cor-
rection based on local incidence angle, and converting 
into dB unit. And the image was resampled to 10  m of 
spatial resolution. In addition, the Sentinel-1 and Senti-
nel-2 images were co-registered to LiDAR data, and the 
coordinate system was WGS_1984_UTM_zone_50N.

Auxiliary data

(1)	 UAV CCD images

	 We obtained UAV CCD orthographic data of the 
same period and coverage as the airborne LiDAR 
data (Fig.  5). The spatial resolution of CCD data 
is 0.2  m. The acquired UAV CCD orthographic 
images could be used to visually identify larch and 
Chinese pine, coniferous and broad-leaf forests for 
the LiDAR sampling plots collection.

(2)	 The subcompartment survey data
	 The subcompartment is the basic unit of forest 

resource planning and design investigation, statis-
tics and management, which contains information 
such as the area and ownership of various forest 
lands, forest origin, ecological factors related to 
forest resources, and natural geographic environ-

(2)LH = LT

(
cos(sz)+ C

cos(i)+ C

)

(3)cos i = cos sz cos tz + sin sz sin tz cos(sa− ta)

Table 5  Summary of the field estimated AGB (Mg/ha)

Category Number 
of plots

AGB range Mean AGB Standard 
deviation

Larch 30 29.83–210.16 113.99 45.84

Chinese pine 42 68.59–277.39 153.00 46.89

Scots pine 4 19.52–148.32 84.31 45.55

Non-stratification 76 19.52–277.39 133.99 51.39

Table 6  The main parameters of UAV-LiDAR system

Parameters Value Parameters Value

Wavelength Near-infrared Frequency (KHz) 550

Scanning the field of view (°) 330 Flight altitude (m) 280

Scanning angle resolution (°) 0.001 Flight speed (m/s) 4.7

Scanning speed (line/s) 200 Line spacing (m) 200

https://scihub.copernicus.eu/
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mental factors, etc. In this study, the distribution 
range of coniferous forest tree species was acquired 
by using the attributes of tree species types from 
the subcompartment survey data of Wangyedian 
Experimental Forest farm updated in 2020. Based 
on this coniferous forest tree species distribution 
map, LiDAR sampling was carried out.

Overview of the point‑line‑polygon framework
We conducted a point-line-polygon framework to sup-
port a wall-to-wall high-resolution forest AGB mapping 
using field plots, UAV-LiDAR strip data and satellite 
imagery. AGB derived from UAV-LiDAR strip data as 
a baseline to Sentinel-based AGB models that used 
LiDAR sampling plots could achieve accuracies. We 
sought to confirm the feasibility of the LiDAR sampling 
strategy consistent with the field plots, and whether the 
use of tree species stratification and WT texture con-
tributed to promote the accuracy of AGB estimation. 
Figure 6 shows the workflow of this study.

In the point-line-polygon framework, the point 
denotes ground survey field plot data, the line rep-
resents UAV-LiDAR strip data of high-density point 

clouds, and the polygon represents large-scale full cov-
erage space-borne optical and SAR imagery. The point-
line-polygon framework is mainly divided into two 
stages: point-line part and line-polygon part. We built 
AGB estimation models of larch, Chinese pine and all 
coniferous forests (non-stratification) respectively at 
the two stages. The first stage is to establish the LiDAR-
based AGB models using UAV-LiDAR metrics and 
field plots by multiple linear regression (MLR) method 
and obtain the AGBLiDAR strip map. Subsequently, the 
classification-based visual interpretation sampling 
approach was used to select the LiDAR sampling plots. 
In the second stage, AGBLiDAR of the selected LiDAR 
sampling plots is used as the reference AGB data, and 
the Sentinel-based AGB models are generated by com-
bining Sentinel-1 and Sentinel-2 images by Random 
Forest (RF) algorithm to produce a wall-to-wall AGB 
map. Four groups of experiments A, B, C and D are set 
up to assess the effect of different type features, and two 
validation sets are used to evaluate the performance of 
Sentinel-based AGB models.

UAV-LiDAR Sentinel-2 Sentinel-1

• atmospheric correction

• terrain correction

• resample

• denoising
• classification
• elevation normalization
• intensity correction

• orbital correction
• radiometric calibration
• deburst, multilooking
• speckle filtering
• terrain correction
• effective scattering area

correction

• height metric
• density metric
• intensity metric
• canopy volume metric

Variable selection

(a) spectral reflectance, vegetation
indices and biophysical variables
(b) wavelet transform textures

(c) backscatter, GLCM
textures
(d) wavelet transform textures

LiDAR-basedAGB

modelling of Larch,

Chinese pine and non-

stratification

Field data

• tree height

• DBH

• canopy cover...

AGB of the

sample plot

(A) a

(B) a + b

(C) a + b + c

(D) a + b + c + d

Sentinel-basedAGB modelling of Larch,

Chinese pine and non-stratification

Optimal Sentinel-based AGB

estimation models

accuracy

evaluation

allometric

growth

equations

Point Line Polygon

LiDAR sampling

plots

AGB distributionmapping

accuracy

evaluation

MLR algorithm

Variable selection

RF algorithm

Four experimnts

Fig. 6  The workflow of this study
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Variables derived from LiDAR and Sentinel data
A total of 58 LiDAR metrics (Table  7) including point 
cloud height, point cloud intensity, point cloud density 
and canopy volume structure were derived at 1 m resolu-
tion from the intensity corrected normalized vegetation 
cloud points.

All 197 remote sensing indices were extracted for AGB 
estimation, with 154 and 43 indicators from optical and 
SAR, respectively. For Sentinel-2, we extracted 10 spec-
tral bands, 19 vegetation indices, 5 biophysical variables 
and 120 multi-scale WT textures (Table  8). In terms 
of Sentinel-1 data, 3 backscatters, 16 spatial domain 
textures, and 24 multi-scale WT textures (Table  9). 
The spatial domain texture of VV and VH polariza-
tion were calculated using Grey Level Co-occurrence 
Matrix algorithm [19] with a 3 × 3 window and 45°direc-
tion. The multi-scale WT textures, representing fre-
quency domain texture information, were derived by 

using two-dimensional (2-D) discrete wavelet transform 
(DWT) algorithm.

WT can decompose signals at different scales. DWT is 
the discretization of scale factor a and translation factor b 
in continuous wavelet transform (CWT). The formula of 
CWT Wf (a,τ) is as follows.

where α is the scale factor, τ is the translation factor, 
ψa,τ (t) is the wavelet basis function, and Wf (a,τ) repre-
sents the CWT.

Generally, the low and high frequencies of the signal 
decomposition are transformed to the discrete wave-
let basis by transforming the α and τ into a power series 
structure.

(4)

Wf (a,τ) =
∫ ∞

−∞
f (t)ψa,τ (t)dt =

∫ ∞

−∞
f (t)

1
√
a
ψ(

t − τ

a
)dt

Table 7  The list of metrics derived from UAV-LiDAR point clouds

Type Variable Definition

Height metric (22) H01, H05, H10, H20, H25, H30, H40, H50, H60, H70, H75, 
H80, H90, H95, H99

Height percentile, all the normalized point clouds are sorted 
according to the elevation. HX is the Xth percentile of point 
cloud height

Hmax Maximum height

Hmin Minimum height

Hmean Mean height

Hmedian Median of height

H.cv Coefficient of variation of height

H.ske Skewness of heights

H.kur Kurtosis of heights

Density metric (10) D01, D02, D03, D04, D05, D06, D07, D08, D09, D10 Canopy return density, the point clouds are divided into 
ten slices of the same height from low to high. D01 to D10 
corresponded to the point density from the lowest slice to 
the highest

Intensity metric (22) I01, I05, I10, I20, I25, I30, I40, I50, I60, I70, I75, I80, I90, I95, I99 Intensity percentile, all the normalized point clouds are 
sorted according to the intensity. IX is the Xth percentile of 
point cloud intensity

Imax Maximum intensity

Imin Minimum intensity

Imean Mean intensity

Imedian Median of intensity

I.cv Coefficient of variation of intensity

I.ske Skewness of intensities

I.kur Kurtosis of intensities

Vegetation Index metric (4) LAI Leaf Area Index, − cos(ang)×ln(G.F)
k

 , ang is the average scan 
angle, G.F is the gap fraction and k is the extinction coef-
ficient

G.F Gap Fraction, 
nground

n  , ratio of ground points, less than 0.2 m in 
normalized cloud points, to all normalized cloud points

C.R.R Canopy Relief Ratio, Hmean−Hmin
Hmax−Hmin

C.C Canopy Cover, 
nvegfirst
nfirst

 , ratio of vegetation cloud points of first 

echo to all cloud points of first echo
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(5)a = a
j
0

(6)τ = ka
j
0τ0

where a0  = 1 , τ0 is a constant and ψj,k(t) is the corre-
sponding discrete wavelet basis of j, k ∈ Z.

Then, the formula of final DWT is as follows.

(7)ψj,k(t) = a
− j

2
0 ψ(a

−j
0 t − kτ0)

Table 8  The list of indices derived from Sentinel-2 data

Note: i represents the level of wavelet decomposition, from 1 to 3. Bj represents the band of Sentinel-2, from B2 to B8, B8a and B11, B12

Variable 
Group

Type (number) Variable Definition

a Spectral reflectance (10) B2 Blue, 490 nm

B3 Green, 560 nm

B4 Red, 665 nm

B5 Red edge, 705 nm

B6 Red edge, 749 nm

B7 Red edge, 783 nm

B8 Near infrared, 842 nm

B8a Near infrared, 865 nm

B11 Short wave infrared, 1610 nm

B12 Short wave infrared, 2190 nm

Vegetation indices (19) ARVI Atmospherically resistant vegetation index, B8− (2× B4− B2)/B8+ (2× B4− B2)

CIg Chlorophyll Index green, (B8/B3)− 1

CIre Chlorophyll Index red edge, (B7/B5)− 1

II Infrared index, (B8− B11)/(B8+ B11)

MCARI Modified chlorophyll absorption ratio index, [(B5− B4)− 0.2× (B5− B3)]× (B5− B4)

S2REP Sentinel-2 red-edge position index, 705+ 35×
[
(B4+B7)

2
− B5

]
× (B6− B5)

MidIR Infrared index, B11/B12

MSI Moisture Stress Index, B11/B8

NDVI Normalized difference vegetation index, (B8− B4)/(B8+ B4)

NDI45 Normalized difference vegetation index wi band4 and band5, (B5− B4)/(B5+ B4)

RVI Ratio vegetation index, (B8/B4)

SAVI Soil adjusted vegetation index, 1.5× (B8− B4)/8× (B8+ B4+ 0.5)

IPVI Infrared percentage vegetation index, B8/(B8+ B4)

PVI Perpendicular vegetation index, sin(45◦)× B8− cos(45◦)× B4

PSSRa Pigment specific simple ratio chlorophyll index, B7/B4

PSRI Plant Senescence Reflectance Index, (B4− B3)/B6

REIP Red-edge infection point index, 700+ 40×
[
(B4+B7)

2
− B5

]
/(B6− B5)

TNDVI Transformed Normalized Difference Vegetation Index, 
√

B8−B4
B8+B4

+ 0.5

VARI Visible light atmospheric impedance vegetation index, (B3− B4)/(B3+ B4− B2)

Biophysical variables(5) LAI Leaf area index

FVC Fraction of vegetation cover

FAPAR Fraction of absorbed photo synthetically active radiation

Cab Chlorophyll content in the leaf

Cwc Canopy water content

b Multi-scale WT texture of 
Sentinel-2 (120)

a_i_Bj Approximate texture

h_i_Bj Horizontal texture

v_i_Bj Vertical texture

d_i_Bj Diagonal texture
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2-D DWT algorithm is to transform 2-D images into 
row and column data respectively, and then carry out 
one-dimensional discrete wavelet transform. The princi-
ple of 2-D DWT is shown in Fig.  7. After the one-level 
wavelet decomposition, the approximate features (LL1) of 
the low-frequency subband and the detailed features of 
the horizontal (HL1), vertical (LH1) and diagonal direc-
tions (HH1) of the high-frequency subband are extracted. 
In the second level wavelet decomposition, the approxi-
mate low-frequency components of the one-level wavelet 
decomposition are decomposed by the same operation 
again, and the approximate low-frequency component 
(LL2) and three detailed high-frequency components 
(LH2, HL2 and HH2) of the second level wavelet decom-
position are further obtained. And so on.

In this study, we selected the Sym5 algorithm as the 
wavelet basis function to carry out the three-level wavelet 

(8)Wf (j,k) =
∫

f (t)ψj,k(t)d(t)
decomposition, then extracted the textures of 10 spectral 
bands and dual polarization at the corresponding scale.

Variable selection
The RF algorithm is insensitive to multiple collinearity, 
and the results are robust with respect to missing data 
and non-equilibrium data [24]. It is actually an improved 
bagging approach that uses a CART tree as a model in 
Bagging. In addition to classification and regression, the 
RF algorithm can determinate the relative importance of 
different variables and serve as a high-dimensional fea-
ture selection tool, which has two evaluation indexes, 
%Inc MSE and Inc Node Purity. The higher the values 
of %Inc MSE and Inc Node Purity are, the greater the 
importance is.

In the two stages of this point-line-polygon frame-
work, we all used the Pearson correlation analysis and 
RF algorithm to determine the best combinations of the 
variables. First, variables that were significantly (p < 0.05) 
correlated with reference AGB were selected. Afterwards, 

Table 9  The list of variables derived from Sentinel-1 data

Note: m represents the level of wavelet decomposition, from 1 to 3. n = 1 or 2, B1 represents the VH channel, B2 represents the VV channel

Variable group Type (number) Variable Definition

c Backscatter (3) VV Backscatter coefficient of VV

VH Backscatter coefficient of VH

VH/VV Ratio of VH to VV

Spatial texture (16) VH_mean, VV_mean Mean

VH_ent, VV_ent Entropy

VH_con, VV_con Contrast

VH_dis, VV_dis Dissimilarity

VH_var, VV_var Variance

VH_cor, VV_cor Correlation

VH_hom, VV_hom Homogeneity

VH_asm, VV_asm Angular second moment

d Multi-scale WT texture of Sentinel-1 (24) a_m_Bn_sar Approximate texture

h_m_Bn_sar Horizontal texture

v_m_Bn_sar Vertical texture

d_m_Bn_sar Diagonal texture

Fig. 7  Schematic diagram of 2-D DWT
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the importance of the obtained preliminary candidate 
variables was ranked based on RF algorithm, and the first 
n variables whose importance differs greatly from the 
subsequent variables were selected according to the rank. 
The RF algorithm implemented in R language was used 
to model and evaluate the importance of the variables. 
For importance ranking, ntree was set to 1000 and mtry 
was set to one third of the number of variables involved.

Forest AGB modelling from LiDAR data
In the point-line part, the relationship between field-
based AGB and LiDAR metrics was explored using 
MLR model. 42 Chinese pine plots, 30 larch plots and 
all 76 coniferous forests plots were used to build and 
validate the LiDAR-based AGB models based on the 
optimal LiDAR metric combinations after variable selec-
tion under Chinese pine, larch and non-stratification 
scenarios.

Considering the limited number of field plots, K-fold 
cross validation method was used to evaluate the model. 
K-fold cross validation means that the dataset is ran-
domly divided into K groups, among which the training 
samples are K − 1 folds and the validation dataset is one 
fold, and this process is iterated for k times. In this study, 
we used the leave-one-out cross-validation, that is K = n, 
for calculating root mean squared error (RMSE), relative 
RMSE (rRMSE), mean absolute error (MAE) and cor-
relation coefficient (r), to assess the performance of the 
models.

where y represents the measured value, ŷ represents the 
predicted value, y represents the measured average value 
of ŷ , n represents the number of plots.

(9)r =
√
R2 =

√√√√1−
∑n

i=1

(
y − y

)2
∑n

i=1

(
ŷ− y

)2

(10)RMSE =

√∑N
i=1

(
ŷ− y

)2

N

(11)rRMSE =
RMSE

y

(12)MAE =
1

N

N∑

i=1

∣∣̂y− y
∣∣

LiDAR sampling plots acquisition
In the point-line-polygon framework, obtaining the 
LiDAR sampling plots is the key step, which affects the 
AGB estimation accuracy. In order to reduce the error 
in the up-scaling process, we completed the LiDAR plot 
sampling according to the criteria consistent with the 
field plot sampling. The stratified sampling scheme was 
adopted in the study. The larch, Chinese pine and other 
coniferous forests were identified by visual interpreta-
tion mainly based on a 0.2  m UAV CCD orthographic 
images, assisted by the subcompartment data. During 
the sampling process, the sampling plots were selected 
in accordance with the principles of uniform distribution 
and away from road within the coverage area of the UAV-
LiDAR strip products. Then, with the selected LiDAR 
sampling point as the center, a rectangular sampling plot 
of 25  m  *  25  m was generated, and the direction of the 
sampling plot was due south due north. These LiDAR 
sampling plots were used as training data for modeling at 
regional scale in the second stage.

Biomass up‑scaling and assessment
In the line-polygon part, the AGBLiDAR of LiDAR sam-
pling plots was used as the reference AGB, and combined 
with the variables extracted from Sentinel-1 and Senti-
nel-2 images, the Sentinel-based AGB models of larch, 
Chinese pine and non-stratification were established 
respectively using RF methods after variable selection.

Four experiments were conducted to analyze the suita-
bility of different combinations of variable groups in AGB 
mapping: (A) variable group a; (B) variable group a and 
b; (C) variable group a, b and c; (D) variable group a, b, c 
and d.

The LiDAR sampling plots were used as training sam-
ples to build Sentinel-based AGB models of larch, Chi-
nese pine and non-stratification (Fig. 8). The field survey 
plots, including 30 larch, 42 Chinese pine and 4 Scots 
pine plots, were used as validation samples to evaluate 
the performance of these Sentinel-based AGB models. In 
order to fully evaluate the applicability and accuracy of 
estimated AGB based on the point-line-polygon frame-
work, two validation sets were established using the same 
validation samples. The AGB value of first validation set 
(LiDAR-based AGB validation set) was acquired from the 
LiDAR-based models, and the second one (field-based 
AGB validation set) was calculated by allometric growth 
equation (Fig. 8).

The LiDAR-based AGB validation set is used to verify 
the accuracy of estimated coniferous forests AGB under 
the point-line-polygon framework. The field-based AGB 
validation set, belonging to the point scale, can be used to 
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analyze error transmission and accumulation during the 
up-scaling process. For two validation sets, we all used r, 
RMSE, rRMSE, and MAE to assess the performance of 
the Sentinel-based models in four scenarios.
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