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Abstract 

Background  Detecting and counting wheat spikes is essential for predicting and measuring wheat yield. However, 
current wheat spike detection researches often directly apply the new network structure. There are few studies that 
can combine the prior knowledge of wheat spike size characteristics to design a suitable wheat spike detection 
model. It remains unclear whether the complex detection layers of the network play their intended role.

Results  This study proposes an interpretive analysis method for quantitatively evaluating the role of three-scale 
detection layers in a deep learning-based wheat spike detection model. The attention scores in each detection layer 
of the YOLOv5 network are calculated using the Gradient-weighted Class Activation Mapping (Grad-CAM) algorithm, 
which compares the prior labeled wheat spike bounding boxes with the attention areas of the network. By refining 
the multi-scale detection layers using the attention scores, a better wheat spike detection network is obtained. The 
experiments on the Global Wheat Head Detection (GWHD) dataset show that the large-scale detection layer performs 
poorly, while the medium-scale detection layer performs best among the three-scale detection layers. Consequently, 
the large-scale detection layer is removed, a micro-scale detection layer is added, and the feature extraction ability in 
the medium-scale detection layer is enhanced. The refined model increases the detection accuracy and reduces the 
network complexity by decreasing the network parameters.

Conclusion  The proposed interpretive analysis method to evaluate the contribution of different detection layers in 
the wheat spike detection network and provide a correct network improvement scheme. The findings of this study 
will offer a useful reference for future applications of deep network refinement in this field.
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Introduction
Wheat is one of the world’s important food crops. The 
statistics of the Food and Agriculture Organization of 
the United Nations show that global wheat produc-
tion in 2021 is 776.8 million tons with a planted area of 
220 million hectares, and the global wheat production 
in 2022 is expected to be 770.8 million tons [1]. In the 
context of world population growth and global climate 
change, ensuring stable and increased wheat production 
is crucial to world food security. Meanwhile, because the 
number of wheat spikes per acre and grain weight per 
spike directly determine the final yield [2], detecting and 
counting wheat spikes are important [3] for predicting 
and measuring wheat yield before harvest.

With the improvement of computer technology in 
recent years, deep learning-based object detection tech-
niques have been increasingly applied to wheat spike 
detection. Some are two-stage detection methods, e.g., 
R-CNN [4], Fast-RCNN [5], and Faster-RCNN [6]. Some 
are one-stage detection, e.g., YOLO (You only look once) 
[7], YOLO9000 [8], YOLOv3 [9], YOLOv4 [10], and 
YOLOv5 [11].

Based on these technical means, some researchers 
evaluated the existing methods on public datasets [12, 
13], while others focused on improving the state-of-art 
deep-learning-based methods on their private datasets 
[14, 15]. In these datasets, all wheat spikes have corre-
sponding ground-truth boxes.

Both non-convolutional and convolutional wheat spike 
detection methods focus on wheat spike size informa-
tion. Some non-convolutional methods use image pro-
cessing technology and machine learning to design 
feature extraction for small-sized wheat spikes detec-
tion [16, 17]. Due to the differences in variety, environ-
ment, and observation scenarios, the size of wheat spikes 
in images varies significantly, resulting in different roles 
of multi-scale detection layers of the neural network in 
wheat spike detection. The problem is how to quantita-
tively analyze the role of multi-scale detection layers in 
the complex network structure. Solving the problem 
will provide a correct direction for optimizing the wheat 
spike detection network, and it can also provide a refer-
ence for the research of multi-size object detection [18, 
19]. The development of frontier deep learning interpre-
tive techniques provides a reliable technical way to study 
this kind of problem. Selvaraju et al. proposed a method 
based on Gradient-weighted Class Activation Mapping 
(Grad-CAM), which can use the gradient information 
in the network back propagation along with network 
feature layers to generate a “visual interpretation” as the 
reason for decision-making of the deep learning model. 
It can generate the attention areas of the network layer to 
the specific object and use heat maps with location and 

semantic information to highlight the important areas 
in the image for predicting the conceptual object. This 
method provides users with explanatory results and helps 
them to successfully identify or optimize the stronger 
deep learning network [20]. In this study, we introduce 
a network attention method based on the Grad-CAM 
algorithm to explore the role of multi-scale detection 
layers in the deep learning model and refine the wheat 
detection network model according to the interpretive 
analysis results. First, we trained a wheat spike detection 
model based on YOLOv5. Then, the attention scores of 
each network detection layer were quantified based on 
the Grad-CAM algorithm. Following that, We obtained 
the performance of different detection layers for the 
detection of wheat spikes and finally clarified the opti-
mal improvement direction of the network. In addition, 
the optimized wheat spike detection network was suc-
cessfully constructed and validated on the Global Wheat 
Head Detection (GWHD) dataset.

Methods
Overall technical framework
This study proposes a strategy for improving the detec-
tion layer scales of a deep learning-based wheat spike 
detection network based on interpretive analysis 
(Fig.  1). YOLOv5 is applied as the basic wheat spike 
detection network [11]. First, the feature maps of all 
channels in each detection layer are obtained, and the 
backpropagation of the detection network is performed 
to obtain the gradient values of each feature map to 
calculate the weights of feature maps. Weighted sum-
mation is conducted between the weight values and 
the feature map values. This process involves calculat-
ing the mean value of all pixels in an individual feature 
channel at each detection layer. This mean value is used 
as the weight parameter for the corresponding feature 
map. The calculated weight parameter is multiplied 
by the pixel values of the corresponding feature map. 
The results of these calculations are summed across all 
feature channels in the detection layer and weights of 
feature maps can be obtained. Second, the Grad-CAM 
value is input to the ReLU activation function to obtain 
the positive class activation mapping. Thus, the wheat 
spikes attention area of the network is obtained. Then, 
the attention score of each detection layer for an indi-
vidual wheat spike is quantified by comparing the prior 
wheat spike labeled box and its attention area. Finally, 
the attention score in each detection layer is assessed 
to improve detection layer scales. With this improve-
ment, a stronger wheat spike detection network is con-
structed to achieve higher performance in wheat spike 
detection.
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Global wheat head detection (GWHD) dataset
GWHD dataset is an important large wheat spike image 
dataset in the world, covering a total of 6515 images of 
wheat spikes from 12 different countries, with different 
growth stages, genotypes, planting conditions, and image 
acquisition methods. The spatial resolution of images 
is 1024 × 1024, and the spectral bands are red, green, 
and blue. The total number of manually labeled wheat 
spikes in the dataset is 275187. The dataset consists 
of two versions, GWHD_2020 [21] and GWHD_2021 
[22]. Among them, GWHD_2021 is an adaptation and 
expansion of GWHD_2020. In this study, GWHD_2021 
and GWHD_2020 were both used in model develop-
ment. In particular, based on the wheat spikes size 

distribution in the GWHD dataset, 1000 representative 
wheat spike images from four sub-datasets (ethz_1, arva-
lis_1, usask_1, and inrae_1) in GWHD_2020 were evenly 
selected for analyzing the role of multi-scale detection 
layers in the network, totaling 44538 wheat spikes. The 
differences in wheat spike morphology and size in the 
four sub-datasets are significant (Table 1, Fig. 2).

Improvement of detection layer scale in standard YOLOv5
Overview of YOLOv5
The study adopts the YOLOv5 object detection model as 
the benchmark network. YOLOv5 is a high-performance 
one-stage deep learning framework. It consists of four 
main modules, including the input module, the backbone 

Fig. 1  Technical framework

Table 1  The selected images from GWHD_2020 for interpretive analysis

Sub-dataset Average spike width 
(Pixels)

Average spike length 
(Pixels)

Average spike size 
(Pixels)

Number of selected 
images

Number 
of labeled 
spikes

arvalis_1 80 75 6312 300 12,800

inrae_1 120 119 15271 176 3701

usask_1 98 87 9247 200 5737

ethz_1 76 63 4783 324 22,300

Total – – – 1000 44,538
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module, the neck module, and the detection module. The 
backbone module of YOLOv5 is mainly responsible for 
the feature extraction of wheat spikes. The neck module 
of YOLOv5 focuses more on image feature extraction and 
fusion than the backbone module. With Path Aggrega-
tion Network (PANet) and Bi-directional Feature Pyramid 
Network (BiFPN), the neck module achieves bottom-up 
and top-down feature fusion by two up-sampling opera-
tions [23, 24]. The detection module of YOLOv5 conducts 
object bounding box generation and object prediction in 
three scales: small-scale, medium-scale, and large-scale. 
Correspondingly, the standard YOLOv5 network contains 
three essential network layers: small-scale detection layer, 
medium-scale detection layer, and large-scale detection 
layer. In this study, to improve the network, we use inter-
pretive analysis of these different scale detection layers on 
the performance of the wheat spike detection.

Interpretive analysis of detection layer scale based 
on Grad‑CAM
We use the Grad-CAM algorithm to extract the attention 
areas of wheat spikes from the pre-trained wheat spike 
detection network on three-scale detection layers. Then, 
the quantitative attention scores of all wheat spikes can 
be obtained by comparing the prior wheat spike labeled 
boxes with the attention areas of wheat spikes. Finally, the 
contribution of each detection layer of the network to the 
successful detection can be quantitatively evaluated based 
on the attention score after calculating the proportion of 
wheat spikes in each score interval. Grad-CAM is a visuali-
zation interpretation method for neural networks [25]. The 
principle of Grad-CAM is similar to the other class activa-
tion mapping (CAM) methods. It calculates αk the average 
value of the gradients in each channel k of the network fea-
ture layer as weights [26]:

Where y is the prediction score of the network for the 
wheat spike class; Ak

ij represents the value of the i-th row 

(1)ak =

1

Z

∑

i

∑

j

∂y

∂Ak
ij

and j-th column in the feature map of channel k; Z repre-
sents the multiplied value of width and height of the fea-
ture map.

Then, the weighted summation operation of weight αk 
and feature map Ak is performed on these channels, and 
the ReLU activation function filters out the negative val-
ues of the feature layer to obtain the final Grad-CAM 
value LGrad−CAM:

where Ak represents the k-th channel in the feature layer 
A; αk represents the weight of the k-th channel in the fea-
ture layer.

Grad-CAM values are visualized in heat maps, thus 
visualizing the role of important areas in the network on 
wheat spike detection. Meanwhile, the Grad-CAM value 
is applied to extract the attention area to wheat spikes of 
three-scale detection layers. We define the attention area 
RGrad−CAM as the region with a non-empty Grad-CAM 
value area and is quantitatively compared with the area 
RLabel f prior wheat spike labeled boxes. Then the S value 
is derived as the contribution of detection layers to the 
wheat spike detection:

where RGrad−CAM represents the area of attention region; 
RLabel epresents the area of wheat spike labeled boxes; S 
represents the final attention score.

Network improvements
The proposed method quantitatively evaluates the per-
formance and contribution of the original three detec-
tion layers based on the attention scores. Based on this 
evaluation, we develop a network improvement strat-
egy. Removal of the large-scale detection layer will be 

(2)LGrad−CAM = ReLU

(

∑

k

αkA
k

)

(3)S =

RGrad−CAM

RLabel

Fig. 2  Sample wheat spike images of the four sub-datasets of GWHD_2020
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considered when its attention score is poor. Adding a 
micro-scale detection layer will be considered to improve 
the detection of small-sized objects when the attention 
score of the small-scale detection layer is excellent [27]; 
otherwise, it is removed. When the attention score of 
the medium-scale detection layer is excellent, the feature 
enhancement operation will be applied. In the Yolov5 
backbone, shallow convolutional layers can extract spa-
tial features, while deep convolutional layers can extract 
semantic features. The semantic and spatial features are 
upsampled and downsampled, respectively, and com-
bined bidirectionally by fusion. The multi-scale features 
are then directed to the medium-scale detection layer. 
This process introduces more feature information with 
the same scale from the backbone module to the neck 
module and enhances the features in the medium-scale 
detection layer. These measures build a new strong detec-
tion network for wheat spike objects (Fig. 3).

Experimental settings
Multi‑resolution training strategy
The study adopts a multi-resolution training strategy. The 
network is trained by inputting images with different res-
olutions of 150 × 150, 300 × 300, 450 × 450 and 600 × 600 
to obtain the trained model.

The experiment is conducted on a workstation equipped 
with Intel® i7 10,700 processor, NVIDIA® Geforce GTX 
1080Ti graphics processor (12GB memory), 32GB RAM, 

and 1TB storage. The computer operating system is 
Ubuntu 16.06, and the hyperparameter settings for net-
work training are set as follows (Table 2). Batch size, train-
ing round, learning rate, and momentum are separately set 
to 8, 100, 0.01, and 0.9.

Evaluation metrics
The study adopts precision, recall, and average precision 
(AP) to evaluate the performance of the deep-learning net-
work model for wheat spike detection. The precision and 
recall are defined as:

(4)precision =

TP

FP + TP

(5)recall =
TP

FN + TP

Fig. 3  Measures of improving the detection layer scale for wheat spike detection: white parts represent standard YOLOv5, and red parts represent 
network improvements

Table 2  Network training hyperparameter setting

Input size Batch size Epoch Learning rate Momentum

150 × 150 8 100 0.01 0.9

300 × 300 8 100 0.01 0.9

450 × 450 8 100 0.01 0.9

600 × 600 8 100 0.01 0.9
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where TP, true positive, means that positive samples are 
correctly predicted as positive; FP, false positive, means 
that negative samples are incorrectly predicted as posi-
tive; FN, false negative, means that positive samples are 
incorrectly predicted as negative.

Since precision and recall are a pair of indicators that 
affect each other, it is difficult to fully evaluate the net-
work using one of the two indicators alone. Therefore, 
the average precision (AP) is introduced. AP is the aver-
age precision of recall in the 0–1 interval for detecting a 
certain class of objects and obtained by:

Results
Attention scores of each detection layer
Experimental results show that attention areas of wheat 
spikes in the small-scale detection layer were small, and 
therefore the calculated attention scores are relatively low 
(Fig. 4a, d).

Moreover, the statistics of attention scores of the small-
scale detection layer show a trend of higher scores for 
smaller sizes and weaker attention for larger wheat spikes 
(Table  3, Fig.  5). Most wheat spikes have low attention 
scores in the range of 0.0–0.1 and 0.1–0.2 (64.4% and 
27.5%). They have 8682 and 3438 pixels in size. The pro-
portion of wheat spikes in the 0.2–0.7 score interval is 
small, while these wheat spikes are also small, with a size 
below 2137 pixels. Moreover, there are no wheat spikes in 
the score interval 0.8–1.0.

In Fig.  4, 75 wheat spikes are labeled, and attention 
areas of wheat spikes are visually larger and more accu-
rate in the medium-scale detection layer than in the 
small-scale detection layer (Fig.  4b, e). Attention scores 
of the medium-scale detection layer are more evenly dis-
tributed and show a trend of higher scores for smaller 
wheat spikes (Table  3, Fig.  5). Moreover, most wheat 
spikes have a moderate score in the range of 0.1 to 0.4. 
These wheat spikes also have a medium size. The pro-
portion of wheat spikes in the 0.4–1.0 interval is small, 
and the sizes of wheat spikes in this interval are smaller, 
below 3360 pixels.

Attention scores of the large-scale detection layer 
indicate that this layer weakens wheat spike detec-
tion (Fig.  4c, f ). The largest proportion of wheat spikes 
is in score interval 0.0–0.1, with a proportion of 38.8%. 
Besides, these spikes are small, with an average size of 
3891 pixels. In the remaining score intervals, wheat 
spikes are evenly distributed (Table  3, Fig.  5). Attention 
areas of wheat spikes in the large-scale detection layer 
are visually large. There are many wheat spike labeled 

(6)AP =

∫

1

0

precision(recall)drecall

boxes without existing attention areas. In addition, there 
is a phenomenon that attention areas exceeded labeled 
boxes. It indicates that the network confuses background 
areas with wheat spike areas. Therefore, the network can-
not make accurate inferences (Fig. 6).

Wheat spikes with an attention score of 0 in three 
detection layers are counted (Table  4). The three detec-
tion layers have 17.5%, 4.0%, and 30.0% wheat spikes with 
an attention score of 0. It indicates that the deep network 
failed to focus on this part of areas where existing wheat 
spikes. Three parts of wheat spikes have average sizes of 
13040, 4660, and 3434 pixels. The small-scale detection 
layer has difficulty identifying larger wheat spikes, while 
the large-scale detection layer has difficulty identify-
ing smaller ones. Medium-scale detection layer merely 
ignores 4% of all wheat spikes. It achieves the best per-
formance among the three detection layers. The small-
scale detection layer also performs better for small-sized 
wheat spikes than for large ones.

Particularly, the large-scale detection layer ignores 
30% of small-sized wheat spikes with an average size of 
3434 pixels and misclassifies background areas as wheat 
spikes. It has difficulty distinguishing spike/background 
areas in Fig. 6 where 67 wheat spikes are labeled.

The performance of the improved network
In summary, the large-scale detection layer performs the 
worst, while the medium-scale and small-scale detection 
layers are relatively better. Therefore, the network struc-
ture is streamlined by removing the large-scale detec-
tion layer, enhancing feature fusion in the medium-scale 
detection layer, and adding a micro-scale detection layer 
to enhance the network’s performance in detecting small-
sized wheat spikes.

We compare the standard YOLOv5 and the improved 
network on the GWHD dataset (Fig.  7). The improved 
network increases AP by 0.5% compared to stand-
ard YOLOv5 and achieves the best AP of 93.5% on the 
600 × 600 resolution image. The largest improvement is 
achieved in the 150 × 150 resolution image training, with 
an AP improvement of 7.4%. The wheat spike detection 
network can be improved based on the proposed inter-
pretive analysis. Furthermore, although the proposed 
method results in a slight decrease in FPS to 130 and a 
slight increase in the number of network layers to 236, 
the network parameters are reduced from 7 to 6 M, and 
AP is improved in each input size (Table 5).

Discussion
Scale issue has always been an important research prob-
lem in wheat spike detection, similar to other object 
detection tasks [28, 29]. The scale issue in the wheat 
spike detection network exists in terms of the multi-scale 



Page 7 of 13Yan et al. Plant Methods           (2023) 19:46 	

Fig. 4  Attention areas and attention scores of multi-scale detection layers (red rectangles are the prior labeled wheat spike bounding boxes). a 
Attention areas of the small-scale detection layer (in white). b Attention areas of the medium-scale detection layer (in white). c Attention areas of 
the large-scale detection layer (in white). d Attention score values and heatmaps of the small-scale detection layer. e Attention score values and 
heatmaps of the medium-scale detection layer. f Attention score values and heatmaps of the large-scale detection layer
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input images and the multi-scale of network layers. They 
cause an impact on the construction of the wheat spike 
detection network, including the model efficiency and 
performance. Therefore, it is necessary to carry out inter-
pretive analysis and scale optimization of the network. 
Due to the limitations of different image acquisition 
platforms, there is an established problem that objects 
vary in size due to their physical morphology in cover-
ing datasets. The size of wheat spikes in images varies 
significantly in the study of wheat spike detection. Some 
researchers directly start from the size characteristics of 
objects in datasets and determine the optimal pixel size 
by up-sampling the small objects in original images. It 
effectively improves detection accuracy, but too many 
upsampling operations increase the processing time and 
lead to more false detections [30]. Based on the above, 
relevant studies deliberately select labeled datasets with 

significant differences in object scales [31] and sufficient 
data amount [32, 33] in the preliminary dataset prepara-
tion stage for detection. The proposed Feature Pyramid 
Network (FPN) solves the multi-scale object detection 
problem at the network structure level. The problem 
is successfully settled by building an FPN structure for 
multi-scale detection [34].

Adjusting network structure will affect object detec-
tion accuracy for a deep learning network [35]. Based 
on subjective experience, researchers have enhanced the 
detection network’s performance by adding a micro-scale 
detection layer [36], adjusting feature enhancement mod-
ules [37–43], and rotating original horizontal detection 
boxes [44–46]. However, the studies mentioned above 
focused merely on the direct application of prior knowl-
edge and thus lacked significant support from interpre-
tive works [47].

Table 3  Attention score statistics of multi-scale detection layers

Detection layer Attention score Proportion of 
spikes (%)

Average spike size 
(Pixels)

Total attention score 
range

Mean 
attention 
score

Small-scale detection layer 0.0–0.1 64.4 8682 0–0.607 0.083

0.1–0.2 27.5 3438

0.2–0.3 6.3 2137

0.3–0.4 1.4 1581

0.4–0.5 0.3 1188

0.5–0.6 0.07 961

0.6–0.7 0.03 733

0.7–0.8 – –

0.8–0.9 – –

0.9–1.0 – –

Medium-scale detection layer 0.0–0.1 13.0 12030 0–0.984 0.25

0.1–0.2 26.4 8949

0.2–0.3 27.9 5619

0.3–0.4 17.8 4165

0.4–0.5 9.0 3360

0.5–0.6 3.9 2758

0.6–0.7 1.4 2347

0.7–0.8 0.5 2003

0.8–0.9 0.08 1742

0.9–1.0 0.02 1527

Large-scale detection layer 0.0–0.1 38.8 3891 0–1 0.309

0.1–0.2 6.3 10298

0.2–0.3 7.3 11365

0.3–0.4 8.7 10581

0.4–0.5 9.0 8946

0.5–0.6 9.2 7962

0.6–0.7 8.2 6861

0.7–0.8 6.6 6092

0.8–0.9 4.0 5297

0.9–1.0 1.9 4346
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Fig. 5  Spike distribution in different attention score ranges of three-scale detection layers. a Small-scale detection layer. b Medium-scale detection 
layer. c Large-scale detection layer

Fig. 6  Two typical problems in the large-scale detection layer. a Absence of network attention for a small-sized wheat spike in this detection layer. 
b The attention area of this detection layer significantly confuses the wheat spike with the non-spike background region. Regions of white/black 
pixels are network attention areas and backgrounds separately.
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Most interpretive research provides qualitative expla-
nations by outputting saliency maps of a network to 
provide a sound scientific basis for network refinement 
[48–50]. With saliency maps, researchers can visual-
ize the location and size of network attention areas [51]. 
However, quantitative metrics are lacking in these studies 
for further network performance evaluation. In the pro-
posed research, attention areas extracted from different 

scale detection layers show significant scale effects. They 
can accurately reflect semantic and location informa-
tion of wheat spikes in each detection layer (Fig. 8). With 
the Grad-CAM algorithm, we successfully quantitatively 
describe the scale effects and provides a scientific basis 
for the scale optimization of the network.

It is visually evident that the attention area of small-
scale and medium-scale detection layers accurately 
reflects wheat spikes’ morphology and spatial location. 
Small-scale and medium-scale detection layers success-
fully focus on 82.5% and 96% of wheat spike objects in 
all 44538 wheat spikes. Attention areas of the large-scale 
detection layer are far beyond areas where wheat spikes 
locate. The large-scale detection layer focuses on merely 
30% of wheat spikes, and there is confusion between 
wheat spike areas and background areas (Fig.  8). This 
confusion means that the wrong attention is paid to non-
spike areas. It may be related to the receptive field of the 
neural network. The size in pixels of feature maps output 

Table 4  Spikes with an attention score of 0 in three detection 
layers

Detection layer Mean spike size (Pixels) Proportion 
of spikes 
(%)

Small-scale 13040 17.5

Medium-scale 4660 4.0

Large-scale 3434 30.0

Fig. 7  Precision, Recall, and AP curves of the wheat spike detection for the improved method and standard YOLOv5. a The precision curves. b The 
recall curves. c The AP curves
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by each detection layer decreases exponentially with a 
factor of 4 from the small-scale to the large-scale detec-
tion layer. Meanwhile, the corresponding size in pixels of 
receptive fields increases exponentially with a factor of 
4 [52, 53]. It is consistent with the situation presented in 
the graph (Fig. 8).

Moreover, according to interpretive analysis, the large-
scale detection layer performs poorly in detecting wheat 
spikes in the GWHD dataset. The new network without a 
large-scale detection layer achieves overall improvements 
in all result metrics in multi-resolution jobs (Table  6). 
This finding is consistent with other research results 
achieving better results in higher resolution training [54].

This study aims to explore the combination of wheat 
spike features and interpretability methods to construct a 
wheat spike detection network. This is a general improve-
ment method that can be applied to various single-stage 
object detection models, including YOLOv5, YOLOv6 
and the latest YOLOv7. Existing object detection mod-
els are evolving towards large-scale and universal models 
with massive parameters, making training difficult and 
leading to high computational costs [55, 56]. This paper 
integrates interpretable methods to construct and opti-
mize a wheat spike detection model for complex scenes 

without too many parameters, providing theoretical 
foundations for model development (Table 5).

The study has only carried out interpretive research on 
three-scale detection layers and conducted scale refine-
ment for these layers. In future work, it will be meaning-
ful to introduce attention-based interpretive work on the 
network’s backbone module to explore its improvement 
path. We also plan to further explain how the convolu-
tional layers and kernels in the neural network affect 
the accuracy of wheat spike detection. Meanwhile, more 
diverse wheat spike datasets are needed to validate our 
method to ensure a convincing and objective research 
finding.

Conclusion
The study proposes a scale refinement method for the 
detection layers of the wheat spike detection network 
based on the deep learning interpretive method Grad-
CAM. A more streamlined wheat spike detection net-
work is successfully constructed and performs well on the 
GWHD dataset with better detection accuracy and lower 
model complexity. Compared to previous work, our 
study has two novel aspects. First, the proposed method 
integrates features with prior knowledge without directly 
referencing and superimposing novel technologies in 

Table 5  The performance of the improved network vs. standard 
YOLOv5

Method Input size FPS Layers Parameters AP (%)

Standard YOLOv5 150 × 150 166 213 7 M 72.2

300 × 300 166 213 7 M 89.2

450 × 450 166 213 7 M 92.0

600 × 600 166 213 7 M 93.0

Improved network 150 × 150 130 236 6 M 79.6

300 × 300 130 236 6 M 90.0

450 × 450 130 236 6 M 92.5

600 × 600 130 236 6 M 93.5

Fig. 8  Attention area of different scale detection layers (in white): a Original wheat spike image. b Attention area of the small-scale detection layer. 
c Attention area of the medium-scale detection layer. d Attention area of the large-scale detection layer

Table 6  The performance of the standard YOLOv5 vs. YOLOv5a

a YOLOv5a represents the standard YOLOv5 without a large-scale detection layer

Method Input size FPS Layers Parameters AP (%)

YOLOv5 150 × 150 166 213 7 M 72.2

300 × 300 166 213 7 M 89.2

450 × 450 166 213 7 M 92.0

600 × 600 166 213 7 M 93.0

YOLOv5a 150 × 150 188 190 5 M 74.9

300 × 300 188 190 5 M 89.4

450 × 450 188 190 5 M 92.5

600 × 600 188 190 5 M 93.3
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object detection. By analyzing the size features of wheat 
spikes, we design a superior wheat spike detection net-
work. Second, we demonstrate the effectiveness of the 
improved modules from both theoretical and experimen-
tal perspectives. The size characteristics of wheat spikes 
in the dataset are quantitatively analyzed and the results 
are used to optimize the wheat spike detection network. 
The study provides a new theoretical basis for research 
on wheat spike detection based on deep learning. It offers 
a technical reference for constructing and developing 
wheat spike detection networks with better robustness, 
generality, and applicability.
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