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Low‑cost and automated phenotyping 
system “Phenomenon” for multi‑sensor in situ 
monitoring in plant in vitro culture
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Abstract 

Background  The current development of sensor technologies towards ever more cost-effective and powerful 
systems is steadily increasing the application of low-cost sensors in different horticultural sectors. In plant in vitro 
culture, as a fundamental technique for plant breeding and plant propagation, the majority of evaluation methods 
to describe the performance of these cultures are based on destructive approaches, limiting data to unique endpoint 
measurements. Therefore, a non-destructive phenotyping system capable of automated, continuous and objective 
quantification of in vitro plant traits is desirable.

Results  An automated low-cost multi-sensor system acquiring phenotypic data of plant in vitro cultures was devel-
oped and evaluated. Unique hardware and software components were selected to construct a xyz-scanning system 
with an adequate accuracy for consistent data acquisition. Relevant plant growth predictors, such as projected area 
of explants and average canopy height were determined employing multi-sensory imaging and various developmen-
tal processes could be monitored and documented. The validation of the RGB image segmentation pipeline using 
a random forest classifier revealed very strong correlation with manual pixel annotation. Depth imaging by a laser 
distance sensor of plant in vitro cultures enabled the description of the dynamic behavior of the average canopy 
height, the maximum plant height, but also the culture media height and volume. Projected plant area in depth 
data by RANSAC (random sample consensus) segmentation approach well matched the projected plant area by RGB 
image processing pipeline. In addition, a successful proof of concept for in situ spectral fluorescence monitoring 
was achieved and challenges of thermal imaging were documented. Potential use cases for the digital quantification 
of key performance parameters in research and commercial application are discussed.

Conclusion  The technical realization of “Phenomenon” allows phenotyping of plant in vitro cultures under highly 
challenging conditions and enables multi-sensory monitoring through closed vessels, ensuring the aseptic status 
of the cultures. Automated sensor application in plant tissue culture promises great potential for a non-destructive 
growth analysis enhancing commercial propagation as well as enabling research with novel digital parameters 
recorded over time.
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Background
A bottleneck of the promising discipline “phenom-
ics”, which combines high-throughput phenotyping 
with genome and transcriptome analyses, is the auto-
mated acquisition of phenotypic data [1]. Applications 
of digital phenotyping range from monitoring individ-
ual plant cells in controlled environments to satellite-
based remote sensing at the plant canopy level using 
various ground-based and mobile platforms such as 
gantries, agricultural vehicles, drones, and various 
sensor technologies such as LIDAR, RGB camera and 
spectral devices [1]. Although plant in  vitro culture is 
the basis of most biotechnological methods for breed-
ing and propagation of disease-free plants, very limited 
research using automated sensors in plant tissue cul-
ture has been reported, mainly using “plant to sensor” 
approaches [2-7] and thus involved a significant degree 
of invasiveness. So far, only few sensor technologies 
were used, including monochromatic imaging sensors 
[2], RGB cameras [3, 5-7], modified RGB camera setups 
with a near infrared (NIR) channel [4, 8] and thermal 
imaging sensors [9]. Therefore, most studies (reviewed 
by Gupta and Karmakar [5]) focused on image analysis 
to estimate parameters like biomass of callus [10], clas-
sification of somatic embryos and regenerated shoots 
[11, 12], as well as chlorophyll determination [13] 
and growth of embryogenic suspension cultures [14]. 
A fully automated image acquisition customized  for 
in vitro cultured plantlets was demonstrated by Dhondt 
et  al. [4]. The “in vitro growth imaging system” (IGIS) 
consisted of a rotating metal platform (carousel) to cap-
ture top-down images of A. thaliana rosettes cultivated 
in Petri dishes. However practical usage of the setup 
is limited in terms of scalability and it is not suited for 

phenotyping of cultures of commercially important 
micropropagated species like Phalaenopsis spp., Rubus 
spp. and Helleborus spp. [15] due to their larger explant 
size and height.

Visual monitoring of the cultures is a costly and time-
consuming repetitive task [8]—typically once a week 
in research and depending on the plant species every 
2 to 10  weeks in commercial propagation—to assess 
the plant quality, the occurrence of contaminations, 
the outgrowth of endophytes, and morphophysiologi-
cal disorders in research laboratories and commercial 
micropropagation laboratories. Quantitative assess-
ments, such as biomass increase or multiplication rate, 
are up to now limited to single point measurements 
at the end of a subculture. Automation offers great 
potential for increasing efficiency of micropropagation 
laboratories since 60–70% of total costs of a micropro-
pagated explant is due to manual labor [16]. According 
to Cardoso et al. [17], the high cost of labor for skilled 
workers is the most common reason for plant tissue 
laboratories to switch from manual to automated pro-
cesses. However, the switch is currently often hindered 
by the high initial cost of automation, which increases 
the interest in low-cost monitoring systems for com-
mercial use.

Due to the specific in  vitro culture conditions in 
closed vessels, optical monitoring approaches face a 
number of challenges such as water condensation on 
the lid, opacity and total reflection of plastic lids or 
media surfaces (Fig.  1) [4, 6, 8]. Therefore, most plant 
evaluation methods were destructive and non-real-
time methods, while digital phenotyping of in  vitro 
plants allows objective and continuous quantification 
of plant characteristics over time. Important biological 

Fig. 1  Highly challenging imaging situation of plant in vitro cultures. A Culture vessel lid removal offers a proper imaging, but results in the loss 
of aseptic status of the cultures. Problems for optical monitoring arise from B water condensation, C opacity of culture containers and total internal 
reflection of ambient or detection light D as well as mirroring of plantlets inside the culture vessel. RGB images were taken from two shoot cultures 
of Malus spp. The image pairs A–B and C–D each show one image scene B, C with and A, D without lid, respectively
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key parameters for the performance of micropropa-
gated plants include biomass, multiplication rate, shoot 
length, plant quality, and the absence of malformations, 
contaminations, and outgrowing endophytes.

Here, we describe the development of a low-cost phe-
notyping platform (named “Phenomenon”) suitable for 
direct monitoring of plant in  vitro cultures while culti-
vation in an established multi-layered shelf system. In 
addition, the “Phenomenon” system is scalable for high-
throughput use in commercial laboratories and capable 
of monitoring a wide range of plant species and various 
different in vitro culture techniques. In the present study, 
we aimed (i) to describe in detail the hard- and software 
components of the established phenotyping system, (ii) 
to validate the four sensor systems and (iii) to demon-
strate the performance of the system for the quantifica-
tion of growth parameters, such as projected plant area, 
average canopy and maximum plant height.

Results
Phenotyping system concept
The phenotyping system was design as a scanning imag-
ing system (xyz-gantry) for an autonomously operating 
acquisition of multi-sensor data, including RGB, ther-
mal, depth and spectral data with specifically developed 
illumination (Fig.  2). Essential steps of continuous data 
acquisition with non-imaging and imaging sensor tech-
nologies were developed (Fig.  3). We could experimen-
tally determine the technical repeatability for xy-axis 
with a MAEX of 0.23 mm and a MAEY of 0.08 mm of the 
repositioning over 16  days via RGB image analysis of a 
reference object (described in detail “Methods” section). 
For the z-axis, a technical repeatability with a MAEZ of 
0.09 mm was obtained by using the calibrated laser dis-
tance sensor. For data segmentation a RGB image pro-
cessing pipeline based on a random forest classifier and a 
depth image processing pipeline based on RANSAC [18] 
were newly established (Fig. 4).

Optical properties of culture vessels
In order to ensure high quality data acquisition for the 
four sensors and their respective spectral working ranges, 
spectral transmittance measurements were conducted 
from the ultraviolet (UV) to the long wavelength infra-
red (LWIR) region of three possible culture vessels and 
lids (Fig.  5). The polypropylene lid and the polystyrene 
Petri dish represented the standard culture vessels, while 
the polyvinyl chloride foil was included as an alternative 
sealing.

While all of the three tested sealings had high trans-
mittance (> 91%) in the visible spectrum (VIS) (Fig. 5A), 
the tested materials differed strongly in the proportion 
of transmitted diffuse light (Table 1). The ratio of both is 

described by the Haze index, according to standard test 
method ASTM D1003 [19], thus representing an indi-
cator for light scattering effects and visual perception 
by camera chips. Haze index should be kept to a mini-
mum in imaging situations to maintain sharpness and 
clarity of the monitored object. The high Haze index of 
34.2% excluded the standard polypropylene lid for being 
used in the phenotyping approach, while the polystyrene 
Petri dish and the PVC foil provided a clear VIS trans-
mittance indicated by much lower Haze indices of 0.5% 
and 1.4%, respectively. In addition, a low to medium 
mean transmittance in the thermal range of 1.9% for the 
Petri dish and 50.6% for the polypropylene lid was deter-
mined (Fig. 5B). However, the foil still perceived a mean 
transmittance of 78.4% in thermal region. Thus the PVC 
foil was most suitable as a sealing system for imaging 
approaches for plant tissue culture, neglecting other not 
tested physical properties.

Collection of representative phenotypic data of plant 
in vitro cultures
The following results derived from automated data acqui-
sition by the phenotyping system “Phenomenon” accord-
ing to Fig.  3, which included an automated sequential 
approach of culture vessel positions and acquisition of 
multi-sensory data over weeks. Exemplary data analysis 
were conducted by automated data processing pipelines 
presented in Fig.  4, where automated segmentation of 
RGB and depth data were performed.

RGB data—Exemplary data analysis and validation of RGB 
image processing pipeline
Several in  vitro phenotyping approaches were con-
ducted with the “Phenomenon” system to demon-
strate its full potential, including different plant species 
(Arabidopsis thaliana, Nicotiana tabacum and Malus 
domestica—data not shown) and developmental phases 
(in vitro germination, shoot and root regeneration and 
shoot multiplication). Figure  6 demonstrates the regen-
eration of adventitious shoots of N. tabacum from leaf 
explants monitored (6 images per day) over 32 days after 
treatment (DAT) and the output of the automated RGB 
processing pipeline of Fig.  4. This experiment clearly 
illustrated the segmentation challenges for image analysis 
such as similar color appearance of developing cell and 
organ types such as callus or roots and the cultivation 
medium, medium adhering to the plant cluster and cam-
era specific changes in color balance. Additional file  1 
contains a complete time-lapse video of one of the cul-
ture vessels. Regardless of the challenges mentioned, this 
video demonstrates the great potential of “Phenomenon” 
in terms of time series observations.
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As second demonstration of the functions of our phe-
notyping system, Fig. 7 shows the whole life-cycle moni-
toring of A. thaliana in vitro (seedling to flowering plant) 
and the calculation of growth performance metrics. 
Time-lapse videos of A. thaliana monitored over 16 days 
are provided in Additional files 2, 3.

The validation of the projected plant area obtained as 
one output from the RGB image processing pipeline by 
relating it to the projected plant area determined by man-
ual annotation of plant pixels (ground truth) indicated a 

high R2 of > 0.99 (Fig. 8A). The automated classification 
approach overestimated the plant area with an average 
error of 7591 px. The relative error of the different acqui-
sition time points (Fig.  8B) indicated a slightly higher 
overestimation at day time images, while an underestima-
tion occurred for night time images (with highest error 
at 23 o’clock), resulting in a mean relative error (MRE) of 
0.37% overestimation. To quantify the classification per-
formance, confusions statistics of 221,834,880 pixel pairs 
were conducted and disclosed a classification accuracy of 

Fig. 2  Experimental setup of the phenotyping system designed for direct monitoring of plantlets and explants cultured in vitro. A 3D 
representation of the designed robot platform inside a multi-layered shelf system with bottom water cooling. B Closeup of sensor arrangement 
of the developed multi-sensor detector head. Four different sensors, including C a laser distance sensor, D RGB camera, E a micro spectrometer 
and F a thermal camera defined the multi-sensor detector head. Furthermore, G a ring-light printed circuit board, including UV, white and red 
LEDs was added to a purchasable diffuse ring light to meet the highly specific illumination situation of monitoring plant in vitro cultures. Detailed 
description in “Methods” section
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97.7%, a sensitivity of 97.7%, a specificity of 96.9% and a 
precision of 99.9% for the segmentation of the proposed 
RGB image processing pipeline.

Depth data—Exemplary data analysis and validation 
of depth image processing pipeline
The first report of depth data acquisition and analysis 
in plant in  vitro culture is illustrated in Fig.  9A using 

Fig. 3  Flow chart of the three main steps of the automated phenotypic data acquisition (indicated in gray). In step I, the position of the culture 
vessel is determined, while in step II the initial images and the calculated plant positions are acquired. To determine plant positions, the original 
image was transformed to hsv-colorspace and the h-channel was segmented with Otsu-Method [20]. Four largest objects were selected as plant 
positions. Step III includes the actual time-lapse loop (start indicated by asterisk), where data of the four sensors are recorded. Detailed description 
in “Methods” section

(See figure on next page.)
Fig. 4  Overview of main data processing steps and used software packages to process the different types of acquired data. A A trainable Ilastik 
[21] classification model was trained to robustly cover the diversity of background (yellow labels) due to changing background and media color 
and diversity of foreground (blue labels) such as different plant species appearance and explant color changes during cultivation. B RGB image 
processing pipeline was developed in Python [22] with OpenCv [23] and PlantCv [24] for batch processing and including the ilastik classification 
model headless for segmentation. Upper row: RGB image processing workflow included an automated brightness and contrast adjustment 
by histogram stretching, down-scaling of image resolution from 4054 px × 3040 px to 1014 px × 760 px. Lower row: The trained classifier predicted 
binary mask of plant pixels rescaled to the original image resolution and applied to the original image for background removal. Exemplary images 
from monitoring of A. thaliana (Trial A). C For depth data processing, Python with Open3D [25] was used as an essential component to perform 
RANSAC [18]-based segmentation. Depth data of in vitro grown A. thaliana seedlings (Trial A). Upper row: Day 0 (Media with 10 day old, small 
seedlings), Hough Transform circle detection [26] and edge-removed depth image. Lower row: Pseudo 3D visualization of depth data of Day 11, 
estimated RANSAC plane and plant height surface corrected by estimated RANSAC plane at Day 11. Detailed description in “Methods” section
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Fig. 4  (See legend on previous page.)
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A. thaliana as an example. It included the calculation 
of important biological parameters from the depth 
data set to monitor culture medium height, culture 
medium volume, mean canopy height, maximum plant 
height and degree of coverage (Fig. 9B). Figure 9 clearly 
demonstrates a height and volume reduction of cul-
ture media, while in plant growth related parameters 
a height increase was notable. Corresponding RGB 
images revealed first signs of flower induction of the 
A. thaliana seedlings at DAT 12, and an associated 
increase in maximum plant height was to be seen in 
depth data at DAT 16. In addition, also the variance in 
average canopy height increased at DAT 16.

Comparing the projected plant area obtained from the 
RGB processing pipeline (assumed as the ground truth) 
with the projected plant area as output from the depth 
processing pipeline, a high correlation, expressed in an R2 
of 0.93 was observed with an average underestimation of 
59.7 mm2 (MAE) of plant area determined by depth data 
(Fig. 10). The mean relative error (MRE) revealed that the 
depth data processing pipeline projected the plant area 
by 65% compared to RGB processing pipeline, mean-
ing 35% of plant pixels were systematically not detected 
by the sensor or have been removed due to segmenta-
tion. This can be considered as a rough estimator of how 
accurately the different sensor technologies (RGB camera 
vs. scanning laser distance sensor) detect plant pixels, 

Fig. 5  Spectral transmittance of culture vessel closures. Transmittance was measured with A an UV/VIS/NIR spectrometer and B with a FT-IR 
Spectrometer. Three independent replicates were measured and mean spectra per lid material are shown. Colored rectangles indicate waveband 
regions and spectral sensitivity of the sensors (according to the manufacturer’s specifications) installed in the phenotyping platform (blue, RGB 
camera with Sony IMX 477 sensitivity: 400 to 700 nm; green, micro spectrometer sensitivity: 340 to 850 nm; red, L, Laser distance sensor emission 
wavelength: 655 nm; brown, thermal camera sensitivity: 8000 to 14,000 nm)

Table 1  Optical characteristics of in vitro culture vessel sealings

PP polypropylene, PVC polyvinyl chloride, PS polystyrene

Measured with UV/VIS/NIR Spectrometer (PerkinElmer Lambda 1050) in 5 nm intervals from 380 to 780 nm according to standard test method ASTM D1003[19]

Haze index [%] = ((Diffuse transmittance/total transmittance) − rel. scattered transmittance by the system) × 100

Culture vessel sealing Replicates Total transmittance [%] Diffuse transmittance [%] Haze index [%] Thick-
ness 
[µm]Average SD Average SD Average SD

Standard lid, PP 3 91.3 0.3 3.3 0.9 34.2 0.9 200

Foil, PVC 3 92.6 0.3 1.4 0.2 1.4 0.2 20

Petri dish, PS 1 91.2 0.6 0.5 900
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Fig. 6  Monitoring of shoot regeneration of N. tabacum leaf explants. A RGB raw images and B processed images with the RGB imaging 
processing pipeline. N. tabacum leaf explants were placed on regeneration medium and developing adventitious shoot clusters were recorded 
over 32 days after treatment (DAT). Degree of coverage was calculated as the sum of plant pixels divided by total number of pixels within an image. 
For determination of explants area, sum of plant pixels was multiplied by pixel-metric-conversion factor. Time lapse video of N. tabacum 
regeneration is provided in Additional file 1
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including the errors derived from segmentation and dif-
ferences in object area representation by the two sensor 
technologies.

Spectral data—Exemplary data analysis and validation 
of detection spot size
An automated and dynamic monitoring of the chloro-
phyll fluorescence signature of an A. thaliana seedling 
cultured in  vitro over 21  days is illustrated in Fig.  11. 
Excitation light emission maximum at 375 nm as well as a 
sequential increase in the fluorescence signal depending 
on the plant growth were evident. Typical emission max-
ima derived from the reaction centers of the photosystem 

(PS): mainly PSII (F690) and PSII and PSI (F730) were 
detected. Furthermore, we have determined the diameter 
of the detection spot of the modified spectrometer to be 
23 mm (detailed description in “Methods” section).

Thermal data—Exemplary data analysis and validation
Thermal imaging of in vitro cultivated A. thaliana seed-
lings was attempted, but faced the challenges of the spe-
cial imaging situation (Fig. 12). When captured without 
the sealing foil, the thermal images (Fig. 12A) of culture 
vessels at a room temperature of 25 °C (day) and placed 
on a bottom-cooled shelf surface with a temperature of 

Fig. 7  Exemplary growth curves of one culture vessel containing five A. thaliana seedlings (Trial B) expressed as projected plant area. Projected 
plant area was calculated as the sum of plant pixels divided by total number of pixels within an image. Yellow smoothed line plot, method = logistic 
regression, gray indicates confidence interval borders α = 0.95. Six images per day over 16 days resulted in a total number of 96 images per growth 
curve. Left corner highlights a closeup showing the diurnal rhythm of plant growth. The bottom part contains segmented images of 0, 3, 6, 9, 12, 
15 DAT (days after treatment). Time-lapse video of A. thaliana (Trial B) is provided in Additional files 2, 3
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21.5  °C, revealed reasonable absolute values of ther-
mal data, as indicated in the corresponding histogram. 
However, thermal images taken through the sealing foil 
(Fig. 12B) only allowed a weak separation between plant 
and background pixels and the corresponding histogram 
indicated an increase in radiometric data.

Discussion
To the best of our knowledge, this is the first report of 
a multi sensor phenotyping system, based on an xyz-
gantry that is capable of autonomous acquisition of rel-
evant sensor data of plant in vitro cultures. The selection 
of exclusively low-cost hardware (Table  2) and open-
source software components accessible via the GitHub 
repository [28] enables other researchers to rebuild the 
“Phenomenon” system and to benefit from it in science, 
education and commercial micropropagation.

As proposed by Dhondt et al. [29] phenotyping systems 
can be defined by system properties like throughput, res-
olution and dimensionality. With the current setup, we 
reached a throughput of multi-dimensional data (RGB, 
depth, spectral, thermal) at a macroscopic resolution 
for ten culture vessels per day. Therein, the main limit-
ing factor was the time-consuming process of depth data 
scans (45 min per vessel; compared to RGB and thermal 
image and spectral point measurements with only a few 
seconds per vessel) and system dimensions restricting the 
working area. Low cost imaging depth sensors based on 

“time-of-flight” principle (ToF) such as Pieye Nimbus 3D 
or Onion tau could reduce substantially the acquisition 
time of depth images. However respective sensors need 
to tested how they perform under the highly challeng-
ing imaging conditions (Fig. 1) of plant in vitro cultures. 
Nevertheless, a large-scale application can be achieved 
with minimal effort and costs if the robot system working 
area is scaled up to a whole shelf.

We aimed at monitoring plant in  vitro cultures with 
minimal invasiveness, consequently phenotyping took 
place dynamically within in the cultivation of in  vitro 
cultures, instead of monitoring open culture containers 
under laminar flow to ensure aseptic conditions. Non-
destructive phenotyping approaches where optical sens-
ing happens trough the vessel encounter a challenging 
imaging situation (Fig. 1) and could be solved in parts by 
the technical design of “Phenomenon”. However, three 
modifications were necessary to increase sensor data 
quality: (i) The culture vessels were placed on a bottom-
cooled surface to avoid condense water formation. Bot-
tom cooling systems are widely applied in tissue culture 
to reduce the relative humidity in the vessels and thereby 
increasing plant quality, but in case of rose roots also 
slowed down the growth of cultures due to the lower 
temperature [30]. (ii) The plastic lid was substituted by 
a PVC foil to maintain a clear and undistorted view, evi-
denced by the Haze index (Table 1) and to increase the 

Fig. 8  Characterization of the segmentation performance of the RGB image processing pipeline from 18 randomly selected images of the A. 
thaliana Trial A dataset. A Linear regression of projected plant area vs. ground truth plant area. The regression line is colored black, while the angle 
bisector line is drawn two-dashed. Gray indicates confidence interval limits at α = 0.95. Adj R2 denotes the coefficient of determination adjusted 
according to Yin and Fan [27], while Pslope and Pinter represent p-values of the coefficients for the intercept and slope determined by simple T-test. 
MAE and RMSE indicate the mean absolute error and the root mean square error of the projected plant area. B Relative error of plant area projection 
for different acquisition time points (23, 3 and 7 o’clock represented night conditions) calculated from 18 randomly selected images of the A. 
thaliana Trial A dataset. First manual annotated image was identified as an outlier marked as red asterisk



Page 11 of 25Bethge et al. Plant Methods  (2023) 19:42	

spectral transmittance in the thermal region (Fig. 5). This 
also affected the gaseous exchange capacity of the culture 
containers, which was notable by increased evaporation 
of water from the culture media. The use of the foil also 
prevented condense water formation, when the bottom 
was not cooled. Thus, this intervention might be suf-
ficient. Nevertheless, future research should address an 
optimization of the culture vessels/lids to enable proper 
imaging sensor application in vitro. (iii) The supplemen-
tation of the culture media with TiO2 allowed a detection 
of the surface of the normally semitransparent media 
with the laser distance sensor (detailed description in 
“Methods” section). TiO2 had already been used in plant 
in vitro culture due to an antimicrobial activity induced 
by UV excitation [31]. However, beneficial or cytotoxic 
effects of TiO2 nanoparticles (NPs) in particular, are cur-
rently under research and most likely will be depending 
on the dose and UV exposure time [32]. TiO2 NPs had 
no negative effect on the growth of soybean seedlings 
in  vitro at concentrations of 10 and 100  mg  L−1 TiO2 
NPs, but slightly reduced fresh mass and root growth at 

1000 mg L−1 TiO2 NPs [33], suggesting a reduction of the 
TiO2 concentration in the culture media for upcoming 
experiments.

The automated scanning imaging system “Phenom-
enon” based on a belt-driven xy-gantry and screw-driven 
z-axis was specified by the manufacturer to provide an 
accuracy of 0.1 to 0.2  mm for the xy-axes and 0.05 to 
0.1  mm for the z-axis. Experimentally, we determined 
the technical repeatability for MAEX of 0.23 mm, MAEY 
of 0.08 mm and MAEZ of 0.09 mm. Considering the fact 
that an exclusively low-cost phenotyping system was 
intended, a sufficient technical repeatability was achieved 
for consistent data acquisition.

RGB data acquisition was conducted with a low-cost 
RGB sensor equipped with a low distortion lens to mini-
mize the error of projection. This error resulted in a dis-
tortion of the projected plant area at the edges of the 
image compared to the midpoint. Furthermore, the esti-
mation of plant area, i.e. of an 3D object, with a 2D sen-
sor without a telecentric lens can be put into question. 
However, plant cultivation in multi-shelf systems (Fig. 2) 

Fig. 9  Exemplary depth data analysis of a culture vessel with four A. thaliana seedlings grown in vitro for 21 days (Trial A). A Yellow bar plot 
displays calculated media height (Mean ± SD), while black dots indicate sensor values of plant pixels after segmentation and colored boxplots 
indicate values for the calculation of the two digital parameters mean canopy height (green) and maximum plant height as mean of the upper 
10 percentile (red). Red dashed line represents the maximum height of the sensor reliable distance (< = 72 mm) and the amount of plant pixels 
after segmentation was colorized in blue. B Individual plots of the dynamic behavior of the calculated digital parameters with equal color code 
and depicted as means ± SD. The calculation of medium volume and all other parameters is described in “Methods” section. 10,000 data points 
for each date were processed from depth scans of an area of 100 mm × 100 mm with a scan pattern of 1 mm × 1 mm. Depending on the necessary 
segmentation for the calculation of the individual parameters, a corresponding proportion of the 10,000 data points was included in the analysis
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with a distance between the cultivation area and the illu-
mination of 400 mm, limited not only the application of 
optics greater in size but also the selection of other sen-
sor technology by their optical specifications (minimum 
working distance; MWD < 150 mm).

In this study, we demonstrated a successful implemen-
tation of a scanning laser distance sensor resulting in a 
depth image of plant in vitro cultures for the first time. 
Novel relevant traits of micropropagated cultures like 
medium height and deduced from this medium volume, 
average canopy height and maximum plant height could 
be quantified and will be validated in upcoming experi-
ments. We showed a reliable application of this tech-
nology (Figs.  9, 10, Additional files 4, 5 and 6), but the 
reflection-based time-of-flight sensor failed, if the reflec-
tion surface was tilt with a higher angle (upwards grow-
ing leaves) and at the upper part of depth images, where 
the emission beam was inside and the detector side of the 
sensor still outside of the culture vessel (Fig.  4: missing 

part of detected Hough circle). In addition, it is worth 
mentioning that the detection error of the reflection-
based sensor could be due to the fact that the emission 
wavelength of the laser distance sensor hits the absorp-
tion of the plant pigments at 655  nm. Therefore, depth 
sensors with spectral detection range in near infrared 
might be superior due to the higher reflectance signal 
derived from the red edge shape of the plant spectra.

The second novelty was the proof-of-concept for apply-
ing a low-cost micro spectrometer to determine spec-
tral signatures, offering great potential for monitoring 
the stress status of in vitro cultivated plantlets. The point 
measuring device was limited in spatial resolution due 
to the detection spot size of around 23 mm (Additional 
file  7). Reflection-based measurements were therefore 
not exclusively-plant-specific. However, the fluorescence 
signature reflected plant specific peaks (Fig. 11). Known 
stress indices, like F690/F740 as a chlorophyll con-
tent estimator [34, 35]—can be calculated from the 

Fig. 10  Linear regression of projected plant area as output of the depth data pipeline vs. projected plant area obtained from the RGB data 
pipeline (ground truth). The regression line is colored black, while the angle bisector line is drawn two-dashed. Gray indicates confidence interval 
limits at α = 0.95. Adj R2 denotes the coefficient of determination adjusted according to Yin and Fan [27], while Pslope and Pinter represent p-values 
of the coefficients for the intercept and slope determined by simple T-test. MAE, MRE and RMSE indicate the mean absolute error, mean relative 
error and the root mean square error of projected plant area. Sampling (n) was formed out of 12 images from four different culture containers 
and 12 time points respectively (DAT 0–DAT 11)
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fluorescence spectra on an explant base and their poten-
tial use to detect early stress responses opens new ways 
in in vitro stress screenings, for example.

Leaf temperature quantification of micropropagated 
plants by thermal imaging approach was already inves-
tigated by Ibaraki and Gupta [9], but so far only after 
their transfer to ex vitro conditions. Thermal imaging 

of plants is widely used to estimate evapotranspiration-
based parameters like water loss, water stress indices or 
stomatal conductance [9, 36, 37]. We could disprove the 
assumption that thermal imaging of in  vitro cultures is 
impossible, even if data quality was limited in terms of 
contrast (Fig.  12). By using the PVC foil, we improved 
the average transmittance in the thermal waveband up to 

Fig. 11  Exemplary determination of dynamic chlorophyll fluorescence monitoring of one of four A. thaliana seedlings grown in vitro for 21 days 
(Trial A). The first peak at 375 nm can be assigned to the excitation light provided by UV LEDs imperfectly blocked by the long pass filter at 420 nm 
(black long dashed line). The region from 400 to 660 nm has been masked for simplified representation. Emission peaks in the region from 660 
to 780 nm indicated the two typical maxima of the chlorophyll fluorescence, derived from PSII (F690) and PSII and PSI (F730). Micro spectrometer 
integration time was set to 300 ms
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78.4% (Fig. 5), but still absorption and reflection occurred 
and reduced the quality of the sensor data (Fig. 12). The 
increased mean temperature of explants imaged through 
the foil might be due to sensor self-reflection compared 
to the imaging without foil. Whether temperature differ-
ences between plants due to evapotranspiration can be 
quantified by thermal imaging of high humidity culture 
vessels (93 to 97% RH with bottom cooling [38]) remains 
to be answered.

The validation of the RGB image processing pipe-
line demonstrated the power of digital image analysis 

accomplished through successful segmentation. Figure 7 
could demonstrate the potential for researchers to com-
pare treatments, such as different media compositions, 
or to track small leaf movement like the diurnal growth 
rhythm. A robust and specific segmentation covering 
the required range of the imaging situation was only 
possible by a trainable segmentation model. Despite the 
acceptance of evoking errors by the use of reduced reso-
lution images as an input of the segmentation model, a 
nearly perfect segmentation was achieved as indicated 
by the high coefficient of determination of R2 of > 0.99 

Fig. 12  Exemplary thermal imaging of in vitro cultivated A. thaliana seedlings (Trial A). A Left side demonstrates imaging without the foil 
that was used to seal the culture vessels, while B the right side shows acquired sensor data through the foil. The respective RGB images are shown 
and thermal data are presented as grayscale and false color images and corresponding histograms

Table 2  Main system components and costs

Description Quantity Hardware Price

G420 Long pass filter 1 Dielectric coated long pass filter 40 €

PCB manufacturing cost 1 Ring light PCB and a Circuit PCB 40 €

Various LEDs 48 Standard 5 mm LEDs (375 nm, 6500 K, 700 nm) 40 €

RGB camera 1 Raspberry Pi Camera High quality 50 €

3D filament, cable chain, limit switch 1 Small mechatronic parts 100 €

Network communication 1 Router & PoE-Switch 100 €

Single-board computer 2 Raspberry Pi 4B & PoE-Shield 120 €

Z-axis with Nema 23 Stepper motor 1 OpenBuilds Linear Actuator 160 €

Thermal camera 1 PureThermal 2 & Lepton 3.5 250 €

Micro spectrometer 1 Mini-Spectrometer C12880MA 350 €

Low distortion lens 1 Edmund Optics 6 mm lens 400 €

Xy-gantry with 24 V power supply and 3×Nema 17 
Stepper motor

1 OpenBuilds ACRO 1515 60" × 60" 410 €

Laser distance sensor 1 OD-Mini OB1-B100 1000 €

Total 3060 €
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referred to manual annotation of plant pixels. Confu-
sions statistics revealed an even higher accuracy of 97.7% 
of classification compared to the study of Mestre et  al. 
[8] reaching an accuracy of 96.9% although they used 
multidimensional data (RGB, NIR) as input for a ran-
dom forest classifier to segment in vitro grown Nandina 
domestica explants. Main classification errors originated 
from overestimation of leaf borders by the automated 
RGB image processing pipeline compared to the ground 
truth segmentation and from false-positive classification 
due to root greening. The time point-dependent perfor-
mance of the segmentation during the day (Fig. 8B) can 
likely be attributed to insufficient illumination of tiny 
plant structures such as leaf petioles, where the average 
light intensity captured by the camera revealed minimum 
residual light at the time point of the greatest underes-
timation (23 o’clock). Interestingly, a correlation coeffi-
cient of 0.75 indicated a strong correlation between the 
absolute classification error and the average mean inten-
sity of the RGB images, explaining the difference at night 
time points where variations in residual light intensity 
occurred due to the switch timing of the tube fluores-
cent lamps (data not shown). Projected plant area can be 
used as good estimator for biomass as a key performance 
parameter of plant in vitro cultures as shown by Faragó 
et  al. [6] who identified a coefficient of determination 
of R2 = 0.99 between A. thaliana digital rosette size and 
fresh mass. As a common issue of image analysis, it might 
be questionable whether the probabilistic based random 
forest model or the human labeled classification better 
reflect the real ground truth of in particular imperfect-
focused leaf borders. It has to be stressed, that for other 
growth habits, such as upright growth with several layers 
of overlapping leaves, it will be more difficult to correlate 
projected plant area and biomass, but in these cases addi-
tional information from depth data may be used to define 
additional covariates.

The depth image processing pipeline showed that 
segmentation of plant in  vitro depth data over time 
requires a dynamic approach to accommodate changing 
processes like plant growth or culture media shrinkage 
via evaporation. The separation of background, culture 
medium and plant pixels was the main objective of the 
segmentation for calculating relative plant height, culture 
medium height, and accounting for tilts of the cultiva-
tion surface or the medium surface. An image registra-
tion approach of RGB (where a good segmentation was 
already achieved) and depth images was not satisfying 
due to the too different representation of objects by the 
two sensor technologies. A Random sample consensus 
(RANSAC [18]) algorithm fulfilled the requirements 
of the task and was able to dynamically and robustly 
detect the culture medium surface planes within the 

one-dimensional and therefore difficult to segment data. 
RANSAC is a robust method for an iterative determina-
tion of outliers from a mathematical model in an overde-
termined data set. The RANSAC approach is commonly 
used in depth data segmentation of plants [39-41] and 
allowed the determination of relevant and novel digital 
features of plant in  vitro cultures like culture medium 
height, mean canopy height, maximum plant height 
and plant area by depth data. However, limitations will 
arise when the culture medium surface is fully covered 
by plants and therefore, no longer represents the largest 
plane. The determination of the height of each explant 
inside the culture vessel is to be aimed, but requires con-
nected compounds after segmentation. To estimate the 
quality of the representation of plants in depth images 
we selected the projected plant area as a basis of com-
parison between RGB and depth sensor data and corre-
sponding pipelines, respectively. The high mean relative 
error (Fig. 10) demonstrated the limitations of the scan-
ning laser distance sensor, as only two thirds of the pro-
jected plant area were represented in the depth data 
after segmentation. This error could be attributed to 
detection errors, unfavorable reflection due to inclined 
surfaces (e.g., leaves growing upwards) or water drops 
on plants, the low spatial resolution of the scan pattern 
(1 mm × 1 mm) or errors caused by segmentation. Never-
theless, depth data of plant in vitro cultures could be used 
to estimate plant biomass, especially when combined 
with projected plant area by RGB images. Furthermore, 
the determination of culture medium volume opens the 
possibility to collect new data of plant water uptake and 
evaporation from culture medium.

We have designed, constructed and tested a novel 
multi-sensor robot platform for phenotyping in plant 
in  vitro cultures offering great potential for automa-
tization of specific tasks in commercial micropropa-
gation, but also offering new possibilities in research 
(Fig.  13A–C). The “Phenomenon” phenotyping sys-
tem differentiates from existing in  vitro monitoring 
approaches that focused primarily on shape analysis 
and the application of which was limited to A. thali-
ana, mainly. The system allows phenotyping of different 
species and different developmental phases in in  vitro 
culture due to its customized and specific hardware 
design (Fig. 2). Repeated monitoring of individual cul-
tures regarding their growth performance over several 
culture passages will reveal new insights into phenom-
ena such as the habituation against phytohormones or 
seasonal variation of growth. Tracing back the develop-
ment of individual explants over time pave the way for 
improvements in cultivation. Furthermore, the system 
could be used to optimize culture medium composi-
tions like amount of plant growths regulators via an 
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objective quantification of the plant phenotypic char-
acteristics. A future perspective of sensor application 
in plant in  vitro culture by automated imaging robots 
includes the construction of multi-sensor data sets to 
benefit from ever easier access to the power of artifi-
cial intelligence such as artificial neural networks as 
reviewed in Prasad and Gupta [12] for complex clas-
sification or regression tasks such as the detection of 
endophytes or the calculation of multiplication rates 
of plant in  vitro cultures (Fig.  13D and F). Further-
more, robots may offer the ability to identify and treat 

explants which exhibit a low or high stress level after 
certain treatments or to early detect potential con-
taminations (Fig. 13E). A marker gene-free early selec-
tion of transgenic plant material as proposed by Yuan 
et  al. [42] with the usage of new reporter genes such 
as eYGFPuv could be automated by the presented low-
cost phenotyping system (Fig. 13G). Finally, we suggest 
using the system in teaching to promote digital skills 
of plant science students. Since it features low-cost, 
stand-alone and portable characteristics, it may provide 

Fig. 13  Potential applications of the automated low-cost phenotyping system in plant vitro culture. While the requirements for the use 
cases from A–C, E and H have already been met, further research is required for the use cases D, F to G (External images from Yuan et al. [42] 
and Quambusch et al. [44])
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students with handling and processing of multi-sensory 
phenotypic data (Fig. 13H) [43].

Conclusions
We developed a novel low-cost multi-sensor automated 
phenotyping system for application in plant in vitro cul-
tures. The unique hard- and software concept is char-
acterized by using exclusively low-cost compounds and 
open-source-based software components. This allows 
remote and programming language-independent access 
to its functionalities, enabling plant scientists to ben-
efit from the capabilities with minimal financial invest-
ment. Various sensor technologies were applied for the 
first time under these challenging culture conditions 
and were evaluated with respect to resulting data quality 
and feasibility with proposed data processing pipelines. 
We demonstrated the digital determination of relevant 
parameters such as projected plant area, average canopy 
height, and maximum plant height, which can be used as 
critical descriptors of plant growth performance in vitro. 
The initial exemplary demonstration of resulting data 
promises great potential. The technical realization of 
“Phenomenon” enabled phenotyping of plant in vitro cul-
tures under highly challenging conditions and will lead to 
increased sensor application approaches for research and 
commercial propagation in upcoming years.

Methods
Adventitious shoot regeneration from N. tabacum leaf 
explants
From in vitro grown Nicotiana tabacum ‘Samsun’ shoot 
stock cultures, leaf explants (5 to 6  mm edge length) 
were prepared and four each were placed in four 500 mL 
polypropylene containers containing 80 mL MS medium 
[45] supplemented with 3% (w/v) sucrose, 0.75% Plant 
agar (w/v) (Duchefa, Harlem, The Netherlands), 4.44 µM 
6-benzylaminopurine (BAP) and 1  g  L−1 titanium diox-
ide. The pH of the medium was adjusted to 5.8 prior to 
autoclaving at 121 °C for 15 min.

Seedling growth of A. thaliana
Arabidopsis thaliana Col-0 seeds stored since 2018 at 
4 °C were surface-disinfected using 70% (v/v) isopropanol 
for 30  s, followed by 2% (v/v) sodium hypochlorite plus 
Tween 20 for 5 min and rinsing three times in water. The 
seeds were germinated for 10 days at 24 °C in Petri dishes 

containing plant growth regulator-free B5 medium [46] 
with 1.5% (w/v) sucrose and 0.8% (w/v) Plant agar at pH 
5.8. Ten days old uniform seedling were transferred to 
the same medium but supplemented with 0.1% (w/v) tita-
nium dioxide (food dye; Ruth GmbH & Co.KG, Bochum, 
Germany) to achieve an opaque white colored appear-
ance which simplified the detection with optical sensors. 
Titanium dioxide is commonly used in food production 
[47]. For this cultivation step, ten 500-mL polypropylene 
containers containing approximately 80  mL of medium 
were used, in each of which four seedlings were placed 
for Trial A and five seedlings for Trial B.

Culture conditions
A polyvinyl chloride foil (PVC system foil; Klarsichtpack-
ung GmbH, Hofheim, Germany) sealed each vessel as a 
substitution of the lid to provide a fully transparent view 
while ensuring the aseptic condition of the cultures for 
both experiments. The cultures were incubated for either 
21 days (Trial A) or 16 days (Trial B) for A. thaliana and 
32  days for N. tabacum at 25  °C with a 16  h photoper-
iod (7 am till 11  pm) and a PPFD (Photosynthetic Pho-
ton Flux Density) of 35 to 40 µmol m−2 s−1, provided by 
two tubular fluorescent lamps (Philips MASTER TL-D 
58W/865). The lab’s bottom-cooling system—provided 
by water-cooled plastic tubes below the shelf—prevented 
water condensation due a local shift of dew point (Fig. 2). 
Room temperature ranged from 19  °C (night) to 25  °C 
(day) with an average of 22 °C, while the average surface 
temperature of the cooled cultivation area ranged from 
19 °C (night) to 24 °C (day) with an average of 21 °C.

Optical properties of culture vessel
Spectral transmittance was measured with an UV/VIS/
NIR spectrometer (PerkinElmer Lambda 1050) equipped 
with 150  mm indium gallium arsenide (InGaAs) inte-
grating sphere in a 1 nm wavelength interval from 250 to 
2500  nm and with a FT-IR Spectrometer (PerkinElmer 
Spectrum Two) in a 3.75  nm wavelength interval from 
2500 to 15,000  nm. Three independent replicates were 
measured for transmittance curves (Fig. 5). Additionally 
Haze index was measured with  an UV/VIS/NIR spec-
trometer (PerkinElmer Lambda 1050) in 5  nm intervals 
and in a wavelength interval from 380 to 780 nm, accord-
ing to standard test method ASTM D1003 [18]. Thus, the 
Haze index was calculated by the following equation:

(1)Haze index[%] =

(

Diffuse transmittance

Total transmittance
− Rel. scattered tranmisstance by the system

)

×100



Page 18 of 25Bethge et al. Plant Methods  (2023) 19:42

Development of the automated phenotyping system
Environmental conditions of the application area
Plant in  vitro cultures are usually cultivated in multi-
layered shelf systems equipped with tubular fluores-
cent lamps (TFL) as a light source with a photoperiod 
of 16/8  h in a temperature-controlled culture room 
(Fig.  2). Plant in  vitro culture techniques are character-
ized among others by the potential of cultivating high 
numbers of plantlets at minimum space—up to 50 cul-
ture vessels can be placed at a cultivation area of ~ 0.6 m2 
(1000  mm × 600  mm) containing multiple explants. The 
distances between the different levels of the multi-layer 
shelf systems are mainly determined by the heat dissipa-
tion of the fluorescent tubes, which limits the available 
space of potential sensor application to 400 mm between 
cultivation area and TFL. For the purpose of automated 
phenotyping of explants cultured under common in vitro 
conditions, we therefore developed a low-cost multi sen-
sor system at minimum space.

Phenotyping platform hardware setup
As backbone of the phenotyping system, a com-
mercially available belt-driven xy-gantry was chosen 
(ACRO system; OpenBuilds, Zephyrhills, USA), that 
allows direct control of movement via a G-code sent to 
the native motion controller. The xy-gantry was speci-
fied with an accuracy of 0.1 to 0.2  mm by manufac-
turer. The dimensions of the xy-gantry were reduced to 
1000  mm × 600  mm (X, Y) to match the dimensions of 
the shelf used in the culture room of Leibniz University 
Hannover (Fig.  2A). To fulfill the specific demands of 
monitoring in  vitro cultures, several hardware compo-
nents were added to the gantry. In order to control the 
height of the multi-sensor detector head (Fig. 2), and in 
particular to accommodate the variable needs of dynami-
cally monitoring different plant species, we installed an 
additional screw-driven z-axis (C-Beam Linear Actua-
tor, OpenBuilds, Zephyrhills, USA; modified to a stroke 
length of 60 mm) and connected it to a motion controller. 
The linear actuator for the z-axis was specified with an 
accuracy of 0.05 to 0.1  mm by manufacturer. The cable 
management was ensured by various 3D-printed parts 
and common cable chains (GitHub repository [28]). Net-
work connection and power supply of the two single-
board computers (Raspberry Pi 4 Model B), controlling 
either the sensors of the detector head or the serial com-
munication of the G-code to the motion controller, were 
provided by a router and a Power-over-Ethernet switch 
(Table 2).

Detector head hardware setup
The detector head installed at the z-axis of the system 
consists of four different sensors (Fig. 2B–F) and diverse 

LEDs for the illumination (Fig. 2G), including a laser dis-
tance sensor (Fig. 2C), a low cost RGB camera (Fig. 2D), a 
micro spectrometer breakout board (Fig. 2E) and a ther-
mal camera board (Fig. 2F).

The laser distance sensor (OD-Mini OB1-B100, Sick 
AG, Waldkirch, Germany) used in this setup was speci-
fied by the manufacturer with a power consumption of 
< 1.92 W, laser emission wavelength of 655 nm, max. out-
put of 390 µW (laser class 1), a measuring range of 50 to 
150 mm and a linearity of ± 100 µm as well as spot size 
of 700 µm × 600 µm at a measuring distance of 100 mm. 
The analog output of the laser distance sensor (10 V) was 
connected via a small voltage divider circuit to a high 
precision 16-bit A/D-converter (ADS 1115), which com-
municated via Inter-Integral Circuit (I2C) with a micro-
controller board (Wemos D1 Mini). The A/D-converter 
gain was set to 2/3 to read a voltage range of ± 6.144 V 
and therefore, cover the analog output range of 0 to 5 V. 
Each distance measurement consisted of a up to ten sin-
gle readouts and averaging (excluding default sensor val-
ues), to achieve a robust and low noise measurement. The 
microcontroller was powered and read out via USB by 
the Raspberry Pi of the detector head (Fig. 14: SensorPi).

The 12.3-megapixel RGB camera (Raspberry Pi Cam-
era HQ, Raspberry Pi Foundation, Cambridge, UK) was 
installed in the center of the ring light PCB to capture 
top-down images of the in vitro culture vessels (Fig. 2B). 
The device was electrically connected to a Raspberry Pi 
via CSI (Camera Serial Interface). The RGB camera was 
equipped with a 6 mm fixed focal length low-distortion 
lens (Table  2: Edmund Optics: 6  mm wide angle lens, 
f/1.2, high resolution = 120 lp/mm, low distortion < 0.5%) 
to achieve a field of view (FOV) of > 100 mm × 100 mm 
at a minimum working distance (MWD) of ~ 100  mm, 
mainly determined by the height of the culture ves-
sels used (500  mL transparent polypropylene contain-
ers with a height of 104 mm). Images of in vitro cultures 
were captured with the following camera parameters: 
resolution = 4054 px × 3040 px, shutter speed = 2000 ms, 
iso = 100, autowhite-balance = off and a fixed gain of 3.3, 
1.5 (red, blue).

The micro spectrometer board (micro spectrometer 
and Breakout Board v2, GroupGets, Reno, USA) allows 
an easy application of the ultra-compact Hamamatsu 
CMOS image sensor (C12880MA, Hamamatsu Photon-
ics K.K., Hamamatsu, Japan), which has 288 channels 
with a spectral range of 340 to 850 nm and a spectral res-
olution of 15 nm. The sensor’s pixel index was converted 
to wavelength with the device-specific factory calibra-
tion coefficients and resulting wavelengths were round 
to integers. The micro spectrometer board was powered 
and readout by a microcontroller (Wemos D1 Mini) con-
nected via USB to the Raspberry Pi of the detector head 
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(SensorPi). The analog values of the micro spectrometer 
were digitized by the 10-bit internal A/D converter of the 
microcontroller. The micro spectrometer was equipped 
with a 3D printed tubular aperture (⌀ 5  mm), which 
was used to integrate a long pass filter (Table 2: Edmund 
Optics: G420; OD > 5; transmission > 90%) and to limit 
the detection spot size of the spectrometer. Due to the 
limited signal, an integration time of 300 ms was speci-
fied for fluorescence detection. The dielectric long pass 
filter with a cut-on wavelength of 420 ± 5 nm was used to 
separate excitation light of the UV-LEDs (Fig. 2G) from 
the chlorophyll fluorescence signal measured in dark 
condition (night).

The thermal camera board (PureThermal 2, GroupGets, 
Reno, USA) was equipped with the FLIR Lepton 3.5 
thermal camera (Lepton 3.5, Teledyne FLIR LLC, Wil-
sonville, USA). This low-cost device is a radiometrically 
calibrated thermal camera, sensitive to longwave infra-
red radiation from 8 to 14 µm, with a spatial resolution 
of 160  px × 120  px, a horizontal field of view (FOV) of 
57°, a radiometric accuracy of up to ± 5 °C and a thermal 
sensitivity of 0.05 °C. Power supply and data readout was 
ensured by a USB connection to one of the Raspberry Pis 
(SensorPi). The internal flat field calibration (dark current 

correction with closed shutter) was set to be performed 
every 90 s.

As an essential requirement of the image acquisition 
of plant in vitro culture, the illumination of the detector 
head (Fig. 2G) had to limit total reflection, occurring at 
the culture media surface and the lid of the culture con-
tainer, to a minimum. Therefore, the illumination setup 
mainly included diffuse and non-direct lateral illumina-
tion. To enable various illumination options and to pro-
vide appropriate signal for the spectral measurements, 
we designed a ring light printed circuit-board (GitHub 
repository [28]), which consists of 24 white standard 
LEDs (ROHM Semiconductor: SLA560WBC7T3), 12 UV 
standard LEDs with a peak maximum of 375 nm (Nichia: 
NSPU510CS) and 12 red standard LEDs (Lumex: SSL-
LX5093HD) with a peak maximum of 700  nm. LEDs 
were controlled by a Mosfet circuit connected to one 
of the microcontrollers (Wemos D1 mini) and powered 
by eight 20  mA micro constant current power supplies. 
Additionally, a 24  V diffuse ring light with white LEDs 
and a color temperature of 6500 K was added as the main 
illumination source for image acquisition.

Fig. 14  Software design and network communication of the phenotyping system components. Two Raspberry Pis hosting Docker containers 
executing scripts for the two main tasks of motion control and sensor control and providing the access over HTTP request via the Python 
framework FastAPI by the main script (semi-autonomous mode/local communication) or the user (reliant mode/ wireless communication). Gray 
areas represent physically co-located software elements, arrows indicate the direction of data transfer, and black lines mark physically connected 
hardware components
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Phenotyping platform software setup
The requirements of the software setup comprised (i) 
remote and programming language independent access 
and control, and (ii) automatic and robust data trans-
fer from the phenotyping system sensors over weeks. 
The software design is mainly based on the Python [22] 
programming language and includes open-source com-
ponents like Docker [48], FastAPI [49], OpenCV [23] 
and PlantCv [24] (Fig. 14). To ensure software reproduc-
ibility and flexibility—independent of framework and 
operating system versions—we decided to containerize 
the applications with Docker (ServerDocker, Sensor-
Docker and ClientDocker) which contain the Python-
based main scripts, according to respective task (sensor 
control, motion control and the fusion of the two tasks). 
Network communication between the different contain-
ers is ensured by a Python framework “FastAPI,” which 
allows the execution of Python functions, provides the 
network addressing and the access of sensor data via 
HTTP requests of the different physically separated net-
work components, resulting in control of the system via 
HTTP independently of programming languages. The 
system specific Python library containing all self-defined 
functions is accessible at our GitHub repository [28]. The 
hardware and software setup yielded a portable and stan-
dalone system, allowing a semi-automated sensor data 
acquisition.

Automated data acquisition
Step I: Start of the system
Step I included the start of the system and the determi-
nation of culture vessel position (Fig. 3). To run the phe-
notyping system in an autonomous way over weeks of 
monitoring, the positions of the to be monitored culture 
containers as a single user input had to be initially set 
in the Python main script. Alternatively, a vessel detec-
tion algorithm based on Circle Hough Transform imple-
mented in our Python library can be used—if some input 
constants are adjusted to the respective imaging situa-
tion. To run the monitoring experiment the started Cli-
entDocker executed the main Python script (Main.py) 
and thus the library  is included with all necessary func-
tions and system constants.

Step II: Data structure and capture initial images 
for determination of plant positions
Once the system is started, the output directory (256 GB 
USB drive connected to ServerPi) is checked for already 
existing experiments, then a new experiment folder and 
subfolders for each culture vessel are created. The culture 
vessel positions are sequentially approached, capturing 
initial images and directly determining plant positions 
of the four largest objects, found by image color space 

transformation in HSV (hue, saturation and value) and 
thresholding of the hue channel with Otsu’s method [20] 
(Fig. 3). Plant positions are calculated by deviation of the 
centroid of the found objects—converted from pixel to 
mm—and the known position of image midpoint (xy-
position of the motion controller).

Step III: Time lapse data acquisition
After the initial steps I and II, the actual time lapse data 
acquisition is continuously looped over the time of the 
experiment (Fig.  3). In our experiments, RGB image 
acquisition was performed sequentially for each culture 
vessel at the midpoint every 4  h. Thermal images were 
captured simultaneously with the RGB images, with 
the thermal sensor shifted to the center point in the xy 
direction. To determine whether additional illumina-
tion is required for RGB night shots, the average pixel 
intensity of an RGB image previously captured without 
system illumination was calculated. Once the system 
recognized a night image situation, the estimated plant 
positions were sequential approached to capture fluores-
cence spectral information with the micro spectrometer 
at the centroid of the found objects and UV excitation 
lights turned on (Fig.  3). After that, consequently the 
acquisition of depth data with the point-measuring laser 
distance sensor was obtained via spatial scan by sequen-
tial readout of the sensor point measurements while 
shifting the detector head in xy direction, according to 
the scan pattern (e.g., 100  mm × 100  mm; with a reso-
lution of 1 mm × 1 mm) with a speed around 0.27 s per 
point × 10,000 points per vessel (~ 45 min), which limited 
the measurement of depth data to two culture vessels per 
4-h cycle. For the experiments conducted in this paper, a 
depth measurement for each culture container once per 
day was ensured.

Data processing
RGB data processing
Classical image processing approaches—applying thresh-
olds to certain color space channels—failed in different 
previously conducted experiments due to a high vari-
ability and diversity in the obtained image data sets, for 
instance due to changing illumination situations dur-
ing the day or due to changes in leaf pigment composi-
tion (Fig. 4A). To obtain a robust image classification, we 
therefore trained a pixel-wise random forest classifier 
with Ilastik [21]. Ilastik is an open-source toolkit offer-
ing machine learning (ML) based image processing for 
pixel and object classification and tracking. 50 random 
RGB images of the A. thaliana dataset were selected 
and partially labeled pixel-wise in either background or 
plant pixels. Features selection was limited to a number 
of 14 features to reduce computation time (Additional 
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file  7). After verification of the classifier, the model was 
exported and used in the RGB image processing pipeline 
in Python script.

PlantCv [24] was used to set up the image processing 
pipeline allowing a uniform batch-processing of hun-
dreds of images. The trained classifier was executed in 
the headless mode to obtain the segmentation binary 
image containing only plant pixels (Fig. 4B). Image pro-
cessing included an automated brightness and contrast 
adjustment by histogram stretching and a temporary 
reduction in resolution to reduce computation time 
from 4054 px × 3040 px to 1014 px × 760 px while using 
the pixel-wise classifier. After obtaining the binary 
plant masks, the connected components analysis was 
carried out, mainly with established PlantCv functions. 
For single plant analysis, the following parameters 
could be calculated: projected plant area, perimeter, 
convex hull area to calculate solidity/compactness and 
stockiness (data not shown). Additionally, the cumula-
tive projected plant area of all explants could be deter-
mined by the sum of non-zero pixels in the segmented 
binary plant mask.

Depth data processing
The level of zero depth was calculated separately for 
each culture vessel as the mean of the raw sensor data 
from four quadrilaterals (10  px × 10  px) of each corner 
of the scan area (100 mm × 100 mm)—where values only 
derived from the cultivation surface and not from the 
media or plant. To obtain depth data from raw sensor 
values of the laser distance sensor, the calibration curve 
of a reference object for data conversion was used (Addi-
tional file 5). Circle Hough Transform [26] was employed 
to detect the culture medium in the depth data from Day 
0 (Fig. 4C). With the radius (r1) of the detected circle, a 
circular binary mask was created with rnew = r1 − 3  px, 
which allowed the removal of disturbing edges of the cul-
ture medium for further determination of plant height 
parameters. RANSAC [18]-based plane detection was 
therefore applied to the edge-removed point cloud to 
dynamically identify the eventually tilted medium sur-
face (Fig.  4C). Here, the following parameters were set 
to detect the planes (distance threshold = 1.5, sample 
size = 3, iterations = 10,000). The obtained RANSAC 
plane of the medium was subtracted from the processed 
point cloud, resulting in height correction and segmenta-
tion of the plant depth data. Sum of non-zero pixels of 
segmented depth pixels (Background: 0, plant: 1) allowed 
the calculation of plant area by depth data.

With the processed depth data, the following param-
eters were calculated:

–	 Medium height (mm): Mean of estimated RANSAC 
plane

–	 Medium volume (mm3): Assuming a circular coni-
cal frustum ( V =

1
3πh (r1

2 + r1r2 + r2
2); h = medium 

height, r2 = 37  mm; radius of the bottom surface of 
the culture vessel (constant)

–	 Average canopy height (mm): Mean of the height 
corrected plant depth data (output)

–	 Maximum plant height (mm): Mean of the upper 10 
percentile of the corrected plant depth data

–	 Projeceted plant areadepth data (mm2): Count of non-
zero pixels of segmented and height corrected plant 
depth data

Spectral data processing
For spectral data processing, the analysis focused on 
the fluorescence measurement, since, in contrast to the 
spectral reflection, the fluorescence spectra were derived 
almost exclusively from plant tissue. First, the dark cur-
rent noise was calculated (spectrometer readout at night, 
with no excitation light on) as the mean of all dark cur-
rent measurements. From all fluorescence spectra this 
mean dark spectrum was then subtracted. For a simpli-
fied visualization, the region between 400–660  nm was 
masked. The masked region contained signals of residual 
light of the culture room and excitation light (UV) due to 
imperfect blocking properties of the used longwave filter.

Thermal data processing
The image situation in the wavelength region of the 
spectral sensitivity of the thermal camera was challeng-
ing due to the optical properties of the culture vessels. 
A successful and robust implementation of thermal data 
acquisition allowed the readout of the 14-bit raw gray-
scale image by the use of Python library Flirpy. Thermal 
data processing included a conversion of 14 bit gray-
scale values to °C by manufacturer-specified conversion 
(yCelsius = yraw/100 − 273.15).

Calibration of the “Phenomenon” phenotyping system
Xyz‑gantry movement calibration
The motion controller of xy-gantry has been set up with 
manufacturer-specificized GRBL settings for each axis 
respectively (GitHub repository [28]), that allow the step-
per motor motion to be translated into steps in metric 
units.

RGB sensor calibration
A relation between pixel and metric units was established 
to express the projected plant area in square millimeters 
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by counting pixels of a graph paper image at the average 
media height of 20 mm (1 mm = 37.7 px).

Laser distance sensor calibration
Laser distance raw sensor data were technically cali-
brated by measuring a staircase shaped reference object. 
Therefore, z-axis was set to the same value as used in 
later experiments (z-axis = − 40  mm = detector head 
height ~ 130 mm). Reference heights were obtained by a 
caliper for 6 different heights and 119 raw sensor values 
were used for calibration. Thus, the zero plane for spe-
cific sensor Z-height (z-axiszero = 19430) as well as the 
maximal valid height could be determined (Additional 
file 5, maximum height <  = 72 mm). The obtained linear 
regression function determined the metric conversion of 
raw sensor data in all conducted experiments.

Spectrometer detection spot size determination
Two approaches were used to estimate the measuring 
spot diameter of the micro spectrometer that had to 
be modified with a 3D-printed aperture tube (GitHub 
repository [28]) to reduce the size of the measurement 
spot: a graphical estimation and an experimental deter-
mination. Additional file  8 contains a schematic sketch 
for the graphical estimation of the detection spot size 
diameter of 23.5  mm. The experimental determina-
tion included a sequential spectrometer readout every 
1 mm, while linear movement in x-axis over a grid with 
black background and white squares of decreasing size 
and a side length ranging from 30 to 21 mm. Spectrom-
eter channel readouts with the highest signal were picked 
from the array and plotted over the x axis. We assumed 
that if the detection spot size diameter is smaller than the 
side length of the square a constant plateau is found in 
the respective peak. The first square where a sharp maxi-
mum was identifiable, or in particular its side length of 
23  mm, determined the detection spot size diameter of 
this approach.

Validation of the “Phenomenon” phenotyping system
Validation of xy and z‑axis repositioning accuracy 
of the “Phenomenon” phenotyping system
Determination of technical repeatability of xy-axis repo-
sitioning over time was conducted by measuring the 
midpoint deviation by RGB images of a reference object 
with a flat surface and a height of 41 mm over 16 days for 
a certain timepoint (12 o’clock), under the settings that 
were used in all experiments. The initial midpoint (Day 0) 
of the largest found object in Otsu-binarized L-Channel 
of CIELAB colorspace was set as the reference for calcu-
lation of the mean absolute error (MAE) for x- and y-axis 
(Table 3). The daily measurement procedure included an 

initial zeroing through limit switches, repositioning and 
RGB data acquisition. Reference object surface area of 
50 mm × 50 mm and founded counts of px were related 
to convert the midpoint deviation of  the reference object 
in px to metric units at a height of 41 mm of the reference 
object (1 mm = 46.7 px).

Determination of technical repeatability of z-axis over 
time was conducted by setting five different z-axis values 
by the motion controller. Each Z step (0  mm, − 6  mm, 
− 20 mm, − 40 mm, − 50 mm) was approached five times 
with initial zeroing through limit switches each time. 
Actual height changes were recorded by the calibrated 
laser distance values. Linear regression analysis revealed 
an R2 > 0.99, a MAEZ of 0.09 mm and a RMSE of 0.11 mm 
(Additional file 4).

Validation of the RGB image processing pipeline
The performance of the RGB image processing pipeline, 
in particular the image segmentation part was checked 
by manual plant pixel labeling with the annotation soft-
ware “LabelMe” [50]. 18 randomly selected images from 
the A. thaliana Trial A dataset were used with 3 images 
per time point and including images of 9 different culture 
vessels. The 18 binary masks from manual segmentation, 
thus forming the ground truth dataset, were matched 
against respective binary masks derived from our RGB 
image processing pipeline. Plant area was calculated by 
the sum of non-zero pixels in binary images (Background: 
0, plant: 1), while for confusion statistics a full compari-
son between the two data sets were necessary, revealing 
221,834,880 pixel pairs where plant pixels reflected the 

Table 3  Technical repeatability of xy-gantry repositioning via 
RGB image analysis

Day [d] MAEX [px] MAEX [mm] MAEY [px] MAEY [mm]

1 8 0.17 3 0.06

2 10 0.21 4 0.09

3 7 0.15 2 0.04

4 8 0.17 7 0.15

5 9 0.19 5 0.11

6 9 0.19 4 0.09

7 10 0.21 3 0.06

8 11 0.24 4 0.09

9 11 0.24 6 0.13

10 12 0.26 6 0.13

11 12 0.26 4 0.09

12 14 0.3 4 0.09

13 15 0.32 6 0.13

14 14 0.3 0 0

15 14 0.3 0 0

Total 10.9 0.23 3.9 0.08
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true positive class and background pixels represented the 
true negative class.

Validation of depth data processing
To estimate the quality of the representation of plants 
in depth images we selected the projected plant area as 
a basis of comparison between RGB and depth sensor 
data and corresponding pipelines, respectively. There-
fore, we converted projected plant area by the RGB 
image processing pipeline from px to square millimeters 
(37.7  px × 37.7  px = 1  mm2), which allowed comparison 
with projected plant area by depth data processing pipe-
line. Projected plant area from RGB and depth data of 4 
culture containers at 12 time points (n = 48) were submit-
ted to a linear regression analysis, assuming the RGB seg-
mentation as the ground truth data.

Software environment for data acquisition, processing, 
analysis and visualization
Data acquisition was done mainly with Python v3.8.8 [22], 
using in particular the libraries FastAPI [49], OpenCV 
v3.4.9 [23], NumPy v1.20.2 [51], Serial v.3.4 [52], Picam-
era v.1.13 [53], Flirpy v0.3.0 [54] and with Arduino IDE 
1.8.19 [55] with the following libraries: arduino-micro-
spec [56], SerialCommand [57] and Adafruit_ADS1015 
[58]

RGB Image processing and analysis was conducted 
with Python v3.8.8 [22] in the Jupyter Notebook v6.3.0 
[59] environment using the following packages: PlantCv 
v3.11.0 [24], OpenCV v3.4.9 [23], NumPy v1.20.2 [51], 
Matplotlib v3.4.1 [60], scikit-image v0.18.1 [61] and the 
Software toolkit Ilastik v1.3.3 [26] headless integrated in 
the Python script.

Depth data analysis included subsequent additional 
Python libraries: Pandas v1.4.2 [62], Open3D v0.15.1 [25], 
Pyvista v0.34.0 [63].

For data visualization, spectral data analysis and sta-
tistical analysis, where statistical test assumptions 
were proofed graphically, we used R v4.1.2 [64] and the 
R-packages dplyr v1.0.8 [65], ggplot2 v 3.3.5 [66], kable-
Extra v1.3.4 [67], purrr v0.3.4 [68], readr v2.1.2 [69], 
tidyverse v1.3.1 [70], hyperSpec v0.100.0 [71] and photo-
biology [72].

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13007-​023-​01018-w.

Additional file 1. Time lapse video of shoot regeneration of N. tabacum 
in vitro. Leaf explants were cultivated at MS medium supplemented 
4.44 µM. Shoot development was were monitored over 32 days of cultiva-
tion. Images were segmented with a trained classifier. Uncompressed 
video is available from the corresponding author on reasonable request.

Additional file 2. Time lapse video with original images of A. thaliana 
growth in vitro. 10 days old seedlings were cultivated on modified B5 
mediumand monitored for 16 days. Uncompressed video is available from 
the corresponding author on reasonable request.

Additional file 3. Time lapse video with segmented images of A. thaliana 
growth in vitro. 10 days old seedlings were cultivated on modified B5 
mediumand monitored for 16 days. Images were segmented with a 
trained classifier. Uncompressed video is available from the corresponding 
author on reasonable request.

Additional file 4. Technical repeatability of Z-axis repositioning. Five dif-
ferent z-axis values were set to the motion controller and approached five 
times with initial zeroing through limit switches each time. Actual height 
changes were recorded by the calibrated laser distance values.

Additional file 5. Calibration of laser distance sensor. Linear regression of 
raw sensor values of the laser distance sensor. The reference height was 
determined with a caliper of a staircase-shaped object (RGB and depth 
image in bottom left corner). The regression line is colored black, while the 
linear regression extrapolation is drawn dashed. Gray indicates confidence 
interval limits at α = 0.95. Adj R² denotes the coefficient of determination 
adjusted according to Yin and Fan [27], while Pslope and Pinter represent 
p-values of the coefficients for the intercept and slope determined by 
simple T-test. MAE and RMSE indicate the mean absolute error and the 
root mean square error of calibration. n = 119.

Additional file 6. Technical repeatability of spatial scanning with laser 
distance sensor over time. Determination of technical repeatability over 
time was conducted by measuring a reference object with a flat surface 
and a height of 41 mm once per day over 6 days, under the settings that 
were used in all experiments. The initial depth measurementof an area 
of 50 mm × 50 mm was set as the reference for calculation of the mean 
absolute errorand the root mean square error. The daily measurement 
procedure included an initial zeroing through limit switches, repositioning 
and depth data acquisition by spatial scan.

Additional file 7. Random forest classification model features for seg-
mentation of A. thaliana Trail A.

Additional file 8. Experimental and graphical determination of modified 
spectrometer detection spot size. Image of the modified spectrometer 
are shown in upper right corner. A) Experimental determination of spec-
trometer detection spot size by a sequential spectrometer readout every 
1 mm, while linear movement in x-axis over a grid with black background 
and white squares of decreasing size and a side length ranging from 30 
to 21 mm. Spectrometer channel readouts with the highest signal were 
picked from the array and plotted over the x-axis. We assumed that if 
the detection spot size diameter is smaller than the side length of the 
square a constant plateau is found in the respective peak. The first square 
where a sharp maximum was identifiable, or in particular its side length 
of 23 mm determined the spot size diameter. B) Graphical estimation by 
drawing at a 1:1 scale. Graphical determination found a spot size diameter 
of 23.5 mm.
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