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Abstract 

Background  The flowering period is a critical time for the growth of rape plants. Counting rape flower clusters 
can help farmers to predict the yield information of the corresponding rape fields. However, counting in-field is a 
time-consuming and labor-intensive task. To address this, we explored a deep learning counting method based on 
unmanned aircraft vehicle (UAV). The proposed method developed the in-field counting of rape flower clusters as a 
density estimation problem. It is different from the object detection method of counting the bounding boxes. The 
crucial step of the density map estimation using deep learning is to train a deep neural network that maps from an 
input image to the corresponding annotated density map.

Results  We explored a rape flower cluster counting network series: RapeNet and RapeNet+. A rectangular box 
labeling-based rape flower clusters dataset (RFRB) and a centroid labeling-based rape flower clusters dataset (RFCP) 
were used for network model training. To verify the performance of RapeNet series, the paper compares the counting 
result with the real values of manual annotation. The average accuracy (Acc), relative root mean square error (rrMSE) 
and R2 of the metrics are up to 0.9062, 12.03 and 0.9635 on the dataset RFRB, and 0.9538, 5.61 and 0.9826 on the data-
set RFCP, respectively. The resolution has little influence for the proposed model. In addition, the visualization results 
have some interpretability.

Conclusions  Extensive experimental results demonstrate that the RapeNet series outperforms other state-of-the-art 
counting approaches. The proposed method provides an important technical support for the crop counting statistics 
of rape flower clusters in field.
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Background
Rapeseed oil is the third largest vegetable oil in the world 
and one of the main sources of vegetable oil for human 
consumption [1]. Prospective observational studies have 
demonstrated that vegetable oils are protective against 
cardiovascular disease  (CVD) and that canola oil has 
the potential to improve many cardiometabolic risk fac-
tors [2]. The global rapeseed supply is expected to grow 
by 10% between 2022 and 2023, with crushing volumes 
reaching a record 75.1 million tons [3]. Rapeseed is the 
most productive oilseed crop in China [4]. However, 
constrained by natural resources and the rapid progress 
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of urbanization, China’s cultivated land area continues 
to decrease. The sown area of rapeseed decreased from 
7.192 million hectares in 2011 to 6.8 million hectares in 
2020 [5]. Consequently, continuously increasing rapeseed 
production plays an important role in ensuring the sup-
ply of rapeseed oil.

Flowering stage is crucial to its growth. For example, 
chemical pest control on newly flowering rape plants can 
effectively manage rape flower beetles and other pests to 
guarantee optimum rape plant growth and flowering [6]. 
Foliar spraying of plants at different flowering periods 
to provide the critical nutrients required for blossom-
ing oilseed rape is a crucial part of enhancing the yield 
and quality of oilseed rape [7, 8]. The flowering of oilseed 
rape help farmers manage their fields better. In addition, 
the number of pods of rapessed per plant is decisive for 
seed yield. This trait is ultimately determined by the sur-
vival of flowers [9]. The quantization for flower clusters 
is imperative in precision agriculture, which can help to 
predict the yield information of oilseed rape in the cor-
responding fields for agriculturist and breeder [10, 11]. 
However, field rape flower cluster counting relies on 
manual counts, which are labor- and time-intensive. The 
rape flower count results are subordinate to subjective 
bias, making it more challenging to monitor rape growth 
in a large field scenarios [12–14]. Precision agriculture 
needs advanced field technology. For this reason, it is 
crucial to further extend the study of an automatic and 
non-destructive technology to count the number of rape 
flower clusters.

Previous studies have been paying close attention to 
use of remote sensing technology in high-throughput 
flower phenotypic analysis [15–17]. Fang et al. [18] cap-
tured canopy reflections in green, red, and red-edged, 
NIR bands of rape by a multispectral system mounted on 
an unmanned aerial vehicle (UAV). This work achieved 
the estimation of rape vegetation and rape flowers. Wan 
et  al. [19] combined vegetation indices (VIs) extracted 
from RGB and multispectral images and image classifi-
cation to estimating flower number in oilseed rape. Zang 
et al. [20] developed an enhanced area yellowness index 
(EAYI) based on Moderate Resolution Imaging Spectro-
radiometer (MODIS) time series data for mapping rape 
flowers. Zhang et al. [21] investigated the application of 
vegetation indices in estimating canola flower numbers. 
However, few studies focus on the quantity acquisition 
of flowers directly from the image using remote sensing 
technology. Spatial resolution is a challenge for multi-
spectral and satellite imaging, especially when counting 
small objects.

Oilseed rape is a crop species with remarkable flow-
ers during growth [18]. Sulik et  al. [22] reported that 
the band ratio of green and blue light was strongly (r2 

= 0.87) related to the number of yellow flowers per unit 
area. Consequently, the UAV with RGB imaging char-
acterized by high resolution and flexible acquisition is 
an effective way to count flower clusters. Deep learn-
ing methods for crop counting in RGB imaging have 
been presented in recent years [23, 24]. Samiei et  al. 
[25] designed a deep learning CNN network to learn 
the cotyledon opening during plant seedling develop-
ment. Jiang et  al. [26] used the Faster-RCNN model 
with the Inception ResNet v2 feature extractor, which 
can accurately calculate field plant seedlings. Yang et al. 
[27] introduced a Yolov4-based spatial pyramid pool-
ing (SPP) and multi-level feature fusion method with 
substantial improvement in counting performance. 
The method mentioned above uses the detected object 
boxes to count. Outputs are the locations of individual 
instances and their corresponding bounding boxes. 
Nevertheless, when it comes to counting the flowering 
of rape, the number of flower clusters is anywhere from 
a few to a thousand in one plot. Especially at peak flow-
ering, objects are dense and overlapping. They were dif-
ficult to detect clearly. Additionally, dense object has 
caused great trouble for the labelling work when using 
the deep learning method.

Recently, a deep neural network called TasselNet [28] 
used a regression counting approach that objects in an 
image were described by a density map given dot anno-
tations performed well on maize counts. After that, the 
TasselNetv2 [29], TasselNetV2+ [30], and TasselNetV3 
[31] networks were proposed to further improve the 
counting performance by redesigning the normalizer 
and introducing image segmentation sub-networks. 
These counting methods have yielded good results on 
crop datasets such as the wheat ear dataset [32] and 
rice planting dataset [33]. In particular, for images of 
large crowds, this density map estimation approach has 
been shown to be more robust than the detection-then-
counting approach [34]. The shape of rape flower clus-
ters is nearly round, which makes them more suitable 
for dotted labelling and counting. But there has not 
been a study on the rape flower cluster counting using a 
regression approach.

The main motivation of this study is to develop 
an automatic counting method using deep learning 
method with low-cost labelling based on UAV-RGB 
images. The objective is to: (I) build and train a light-
weight deep regression network for rape flower clus-
ter counting, (II) construct the homemade rape flower 
cluster dataset for training the proposed model, (III) 
evaluate the performance of different counting method 
with manual counting, (IV) verify the effectiveness of 
the proposed method in field.
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Materials and methods
This paper explores the application of the deep learn-
ing method in rape flower cluster counting, which is 
divided into three main parts: data processing, deep 
learning network building, and model testing, as 
detailed in Fig. 1.

In the data processing part, we stitched the rape clus-
ter images taken by the UAV to obtain the orthopho-
tos. The orthophotos were cropped by planting plot to 
obtain rapeseed cluster images for each small plot. The 
rape cluster images of small plots were then used for 
data cleaning to obtain a valid rape cluster image. We 
use rectangular box annotation and centroid annota-
tion to obtain two canola cluster annotation datasets, 
RFRB and RFCP, respectively.

In the section on deep learning network construc-
tion, we studied two types of counting methods: object 
detection and regression estimation. On the RFRB 
dataset, we conducted a rape flower cluster counting 
study on these two types of methods. Only regression 

estimation deep learning networks are used on the 
RFRP dataset.

For the model testing part, we compared the evalua-
tion metrics coming from object detection and regres-
sion estimation and performed a correlation analysis. To 
further analyze the reliability of the counts, we visualized 
the output of the two types of networks in the form of 
bounding boxes and heat maps, respectively, based on 
the output count results.

Study area and image acquisition
Winter rape (seeded at the end of September and har-
vested in May) and spring rape are the two types of oil-
seed rape (planted at the end of April and harvested in 
September). In terms of planting area and productiv-
ity, winter rape occupies more than 90% of China and 
1/4 of the world, with the majority of it being grown 
in the Yangtze River basin. The experimental area was 
located at the Yangluo base of the Institute of Oilseeds, 
Chinese Academy of Agricultural Sciences, Xinzhou 

Fig. 1  Schematic diagram of applying deep learning network for UAV rape flower clusters counting
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District, Wuhan City, Hubei Province, China (N30◦71′ , 
E 114◦51′ ) (Fig. 2). Wuhan is located in the eastern part 
of Jianghan Plain and the middle reaches of Yangtze 
River. Its climate type is subtropical monsoon (humid) 
climate at an altitude of about 24  m, with annual pre-
cipitation of 1150–1450  mm and annual average tem-
perature of 15.8–-17.5◦C . These provide a suitable 
growth environment for rape planting.

The experimental field was divided into 252 plots, 
and the plot area was divided into 8 m2 (2 m × 4 m) and 
6 m2 (2 m × 3 m). Oilseed rape in these plots was man-
aged in the same field management mode with regular 
irrigation and weeding. The oilseed rape used in the 
experiment was winter rape, and the UAV shooting 
period was from February 2021 to May 2021, when rape 
photosynthesis is strong.

In order to sufficiently obtain the morphological 
characteristics of rape flowers at different periods, the 
UAV took image data of rape at different flowering 
periods. Images of rape flower clusters at bud stage, 
first flowering stage, full flowering stage and decaying 
stage are shown in Fig. 3, respectively. From the image, 
we can see that as rape gradually enters the peak flow-
ering period, the flower clusters become denser and dif-
ficult to distinguish.

The UAV model used for data acquisition was Phan-
tom 4pro V2.0, the camera is 2 × 107 pixels, and the size 
of the single image was 5472×3648. Image acquisition 
of each plot was carried out under natural conditions 
by remotely operated UAVs carrying RGB cameras. 
Automatic planning and aerial photography mode were 
adopted. The course overlap rate and side overlap rate 
were set to 75% . The flight altitude was set to a fixed 
value each time and the flight speed was set to 1.9 m/s. 

Fig. 2  Geographical location and UAV remote sensing image mosaic map of the study area. a Location of the study area in Asia. b Location of the 
experimental area in Wuhan City. c Stitching map of UAV images in the experimental area. d Enlarged images of oilseed rape images in some plots
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Data collection in the study area was completed in 
about 100  min. In order to ensure that the captured 
images met the experimental criteria, we screened the 
initially acquired images and found that the quality of 

the rape images taken in the afternoon, evening, or 
when the clouds were heavily obscured was poor due 
to the influence of incident light. The data acquisition 
environment is shown in Table  1. We chose to shoot 

Fig. 3  Geographical location and UAV remote sensing image mosaic map of the study area. From the top left to the bottom right are sample 
images of rape flower clusters taken during the bud, early flowering, full flowering and decaying stages

Table 1  UAV image collection environment

Year Acquisition dates Growths Flight altitude (m) Temperature ( ◦C) Environment

2021 February 19 Bud stage 15 12 11–13 am;
low/middle cloudy
or cloudless;
wind speed less
than 4m/s;
Good light conditions

February 26 First flowering stage 15 14

March 3 Full flowering stage 10 21

March 14 Full flowering stage 10 23

March 22 Decaying stage 10 24

April 5 Decaying stage 10 15

2022 March 1 Full flowering stage 13 20
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between 11 and 13 a.m., considering the optimal light-
ing conditions and wind speed of less than 4 m/s.

Rape‑flower‑cluster datasets preparation
We opt for a supervised learning strategy for the rape 
flower clusters counting study in an effort to get better 
counting results. As a result, the rape flower cluster data-
sets have been created and will be utilized for training. 
Since images acquired by UAV cannot be directly used 
for annotation, pre-processing operations have to be per-
formed. The original images with a resolution of 5472× 
3648 taken by the UAV are stitched together according to 
the geographical location of the site to form a field image 
with a resolution of 40485 × 27129. Then, the ortho-
photo is cropped according to the actual ground size 
using image processing software to obtain a plot image 
with a resolution of 606  × 1105∼672 × 1266. Convert the 
cropped image from RGB color space to HSV color space. 
Increase or decrease the brightness and contrast of each 
image by 10% to increase the diversity of the data. This 
was done in order to take into account the various effects 
that various weather conditions have on image brightness 
during the data acquisition process.

Two annotation techniques, rectangular box annota-
tion and centroid annotation, are used in this study to 
produce training datasets in order to test the counting 
performance of different deep learning approaches. The 
rectangular box annotation uses the free open source 
annotation tool LABELIMG (https://​github.​com/​heart​
exlabs/​label​Img), and the center point annotation uses 
the free open source annotation tool LABELBEE (https://​
github.​com/​open-​mmlab/​label​bee-​client), both of which 
allow simultaneous access by different users and can 
be used by all institutions. The original unlabeled rape 
flower cluster images contain clusters of complex scale 

and diverse traits (Fig. 4a). The rectangular box annota-
tion requires the annotator to carefully grasp the border 
of the rape flower clusters (Fig.  4b), which is more dif-
ficult to operate and prone to omission due to the seri-
ous overlap and adhesion when the rape flower clusters 
are dense. In contrast, the center point annotation only 
requires the annotator to judge the center point of the 
rape flower clusters (Fig.  4c), which is less difficult and 
faster.

We obtained the rectangular box labeling dataset RFRB 
(Rape Flower Rectangular Box Labeling) and the center 
point labeling dataset RFCP (Rape Flower Center Point 
Labeling) by manual labeling. The minimum and maxi-
mum rape flower clusters in dataset RFRB were 8 and 
686, with a median and mean of 297 and 310, respec-
tively. The lowest and highest rape flower clusters in 
RFCP (Rape Flower Center point labeling) were 303 and 
1198, with a median and mean value of 566 and 607, 
respectively.

RapeNet
In the field of computer vision recognition, convolutional 
neural networks have shown superior performance in 
many popular areas by virtue of their high efficiency in 
feature extraction. Convolutional neural networks have 
undergone significant development over the past half-
century, progressing from the earliest LeNet [35] through 
AlexNet [36], VGG(16)Net [37], GoogleNet [38], Micro-
soft ResNet [39], and so forth. The performance of net-
work detection is positively impacted by the stacking 
of more convolutional layers, the use of convolutional 
kernels of various sizes, and the addition of multi-level 
residual structures. On numerous well-known large-scale 
datasets, existing deep convolutional neural networks 

Fig. 4  Two methods of labeling rape flower clusters. a Original image. b Rectangular box labeling of a rape flower clusters. c Center point labeling 
of a rape flower clusters

https://github.com/heartexlabs/labelImg
https://github.com/heartexlabs/labelImg
https://github.com/open-mmlab/labelbee-client
https://github.com/open-mmlab/labelbee-client
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have produced excellent results. However, these net-
works also have a number of drawbacks that are very 
inconvenient for practical applications, including a large 
model size and slow operation caused by the complexity 
of the network structure.

To better address the aforementioned challenges, 
we designed a network structure using the regression 
for rape flower clusters counting, which is referred to 
as RapeNet. The input to RapeNet is a 512×1024 pixel 
RGB image of rape flower clusters, and the output is the 
counting result of the test rape flower image as well as a 
heat map. The pseudo-algorithm of RapeNet is given in 
Table 2.

In Table  2, RapeNet consists of two main parts: the 
backbone network and the loss function. The backbone 
network is built using six pyramidal convolution blocks, 
and the loss function uses Bayesian loss. Each module is 
explained in detail in the following.

Pyramidal convolution
The core of CNNs is convolution, which determines the 
level of feature extraction. Most CNNs use small con-
volutional kernels, because increasing the convolutional 
kernels would bring a huge cost in terms of the number 
of parameters and computational complexity. Ionut et al. 
[40] proposes a pyramidal convolutional layer to solve 

this problem. The kernel pyramidal structure allows for 
the good extraction of detailed features at different levels 
in the scene, which greatly improves the performance of 
the network without increasing the computational cost. 
Inspired by this, RapeNet uses the pyramidal convolu-
tional network’s structure, which is depicted in Fig.  5a. 
Each level of the PyConv {1, 2, 3, . . . , n} applies different 
kernels with a different spatial size for each level. After 
passing through various convolutional kernels, the input 
features are stitched together to produce the final output 
features, which are depicted in a simplified manner in 
the later network structure on the right, as is shown in 
Fig. 5b.

The RapeNet network is built with six-layer pyramidal 
convolutional blocks to better extract detailed features 
and multi-scale information in each feature channel. The 
number of pyramidal convolutional kernels is increased 
in the first three blocks, then decreased in the next three 
blocks. Finally, the regression module is used to get the 
output count heat map, as shown in the Fig. 6.

Bayesian loss
The annotation points in our created rape flower data-
sets are in the center of the flowers, and the advanced 
approach is to turn the annotation points into density maps 
for regression estimation using Gaussian kernels. Manual 

Table 2  The pseudo-algorithm of RapeNet

Algorithm 1 RapeNet

Input: A UAV-RGB image of one plot in a field.

Output: The number of rape flower clusters in the image and a heat map.

Phase 1: The input image Ki is adjusted to a resolution of 512×1024 image Kr , set the sliding window resolution 256×256, and get 8 sub-images.

Phase 2: The whole backbone network is built by pyramidal convolution. A Bayesian loss function is used to constrain the entire training process. A 
likelihood function is constructed for each annotated point using a Gaussian.

Phase 3: Train and test the RapeNet network model.

Fig. 5  Pyramidal convolution blocks
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labeling tends to have a small number of errors with the 
trait variation, shading, and adhesion of rape flowers. The 
density map converted from labeled points by Gaussian 
kernels is not of high quality, resulting in larger biases in 
regression counts on the density map. Ma et al. [41] pro-
posed a bayesian loss function to constrain the regression 
training process and used labeled points to construct a 
density contribution probability model. Then the expected 
count at each annotated point is calculated by summing the 
product of the contribution probability and estimated den-
sity at each pixel, which can be reliably supervised by the 
ground-truth count value.

We introduce a Bayesian loss function to construct a like-
lihood function p between 2D pixel positions in the rape 
flower clusters image for the given rape flower clusters 
labels, which is defined as:

where m = 1, 2, . . . ,M ; M is the number of pixels in the 
density map; n = 1, 2, . . . ,N  , N is the total flower clusters 
count, xm is a 2D pixel location in the rape flower clus-
ters image, yn is a given rape flower clusters labeled point 
location, N

(

xm; zn, σ 2
12×2

)

 is a 2D Gaussian distribu-
tion evaluated at xm , zn is the mean of that labeled point, 
and σ 2

12×2 is an isotropic covariance matrix.

(1)p
(

xm | yn
)

= N

(

xm; zn, σ 2
12×2

)

According to Bayes’ theorem and assuming equal prior 
probabilities for each labeled yn , i.e., p

(

yn
)

= 1
N  , the equa-

tion can be simplified after introducing the posterior prob-
abilities as,

Using the above posterior probability and density estima-
tion map Dest , we can obtain the Bayesian loss function,

The presence of background pixel points will have a great 
impact on the regression estimation. In order to further 
eliminate the bias brought by the background pixels on 
the loss function, the background points outside the 
annotation are treated as another annotation y0 = 0 . At 
this time the loss function can be expressed as,

(2)p
(

yn | xm
)

=
N
(

xm; zn, σ 2
12×2

)

∑N
n=1N

(

xm; zn, σ 212×2

)

(3)L Bayes =
N
∑

n=1

F

(

1−
M
∑

m=1

p
(

yn | xm
)

D
est(xm)

)

(4)

L Bayes + =
N
∑

n=1

F(1−
M
∑

m=1

p
(

yn | xm
)

D
est(xm)

−
M
∑

m=1

p
(

y0 | xm
)

D
est(xm))

Fig. 6  RapeNet network structure
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To define the background likelihood, we construct a 
dummy background point for each pixel,

where zmn  is the nearest rape flower clusters labeled cen-
troid to xm , zm0  is the background point, and d is the dis-
tance between this centroid and the background point zm0
.

To eliminate the effect of large backgrounds on regres-
sion estimation, the background information is treated as 
a class and its posterior probability is calculated. In the 
case where the defined virtual background point z0

m is 0, 
for pixels xm away from the head point, it can be assigned 
to the background label, and the geometry is illustrated 
in Fig.  7.  We also use the Gaussian kernel to define the 
background likelihood,

RapeNet+
Coordinate attention
Several studies have shown that introducing chan-
nel attention modules through branching strategies in 
the design of deep learning networks can improve the 
performance of models [42–45]. It enables lightweight 
networks to pay attention to larger areas by embed-
ding location information into channel attention while 
avoiding incurring large computational overhead. Addi-
tionally, the coordinate attention module can be flexibly 
inserted into deep learning networks [46]. The structure 
of the coordinate attention module is shown in Fig. 8. ‘X 
Avg Pool’ and ‘Y Avg Pool’ refer to 1D horizontal global 
pooling and 1D vertical global pooling, respectively. 
The attention module uses two one-dimensional global 
pooling operations to aggregate the input features in the 

(5)z
m
0 = z

m
n + d

xm − z
m
n

∥

∥xm − zmn

∥

∥

2

(6)

p
(

xm | y0
) def= N

(

xm; zm0 , σ
2
12×2

)

=
1

√
2πσ

exp

(

−
(

d −
∥

∥xm − z
m
n

∥

∥

2

)2

2σ 2

)

vertical and horizontal directions into two independent 
direction-aware feature maps. These two feature maps, 
embedded with direction-specific information, are then 
encoded as two attention maps.

The structure of the RapeNet+ network is shown in 
Fig.  9. A coordinate attention branching structure is 
introduced after the second and fourth layers of pyrami-
dal convolution, respectively. The convolutional pooling 
and normalization layers are added to perform the trans-
formation of the feature channels.

Evaluation metrics

The performance of rape counting model is analyzed 
by using the common evaluation indexes of regression 

Fig. 7  Schematic diagram of background points

Fig. 8  CA attention structure
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counting, which are Average Accuracy (Acc), Mean 
Absolute Error (MAE), Mean Squared Error (MSE), root 
Mean Absolute Error (rMAE), root Mean Squared Error 
(rMSE), relative root Mean Square Error (rrMSE) and 
R2 [28, 29, 47–49]. The smaller the values of the metrics 
MAE, MSE, rMAE, rMSE, and rrMSE, the closer the val-
ues of the metrics Acc, and R2 are to 1, which indicates 
the better performance of the model. The superiority of 
these evaluation metrics in this study indicates the high 
accuracy and robustness of rape flower clusters counting. 
The formulas for these metrics are as follows:

(7)Acc =

(

1−
1

n

n
∑

i=1

|Mi − Ii|
Mi

)

× 100%

(8)MAE =
1

n

n
∑

i=1

|Mi − Ii|

(9)rMAE =

√

√

√

√

1

n

n
∑

i=1

|Mi − Ii|

(10)rMSE =

√

√

√

√

1

n

n
∑

i=1

(Mi − Ii)
2

Fig. 9  RapeNet+ network structure
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where n is the number of images, Mi is the manual count 
of rape flower clusters in image i, Ii is the inferred count 
of rape flower clusters in image i, M̄ is the average man-
ual count of rape flower clusters per image, and Ī is the 
average inferred count of rape flower clusters per image.

Results
In this section, we describe the rape flower cluster data-
set settings, training details, and experimental results 
used for the experiments.

Training details
We opted for the PyTorch deep learning framework to 
build the network model and conducted experiments on 
an NVIDIA 3080 graphics card. Eighty-five percent of the 
data was used for the training set and the remaining 15% 
for the test set, where the training and validation in the 
training set were divided 9:1. The learning rate is set to 
0.00001. The SGD method is used to optimize the learn-
ing rate in the training process. We optimize parameters 
for 1000 epochs with a batch size of 1. The sigma value 
ranges from 0.1 to 10, and the background ratio ranges 
from 0 to 1.

Results on RFRB
Regression counting network performance validation
To do research on the counting method of rape flower 
clusters, we conducted the experiment on rectangular 
box labeled RFRB dataset. In all the following regression 

(11)rrMSE =
rMSE

M̄
× 100

(12)R2 =1−
∑n

i=1 (Mi − Ii)
2

∑n
i=1

(

Ii − Ī
)2

networks, we converted the rectangular box coordinate 
information into centroid coordinates for our experi-
ments. To verify the performance of bayesian losses on 
the regression counting network, we used different losses 
on the rape flower clusters dataset RFRB for comparison 
experiments. The classical Vgg19 and RapeNet+ net-
works are chosen as the backbone networks for the loss 
function comparison experiments.

Among the loss functions used for comparison, OT 
loss [34] and TV loss [34] are training constraints on the 
differences between distributions of normalized den-
sity functions. The MAE loss and MSE loss [50, 51] are 
trained to constrain the difference values and the sum 
of squares of the difference values between the pre-
dicted and manually labeled, respectively. DM loss [34] 
integrates the values of TV, OT, MAE for training con-
straints. From the comparison results shown in Table 3, 
we can see that the performance of MAE loss, MSE loss, 
DM loss and Bayesian loss is better than OT loss or TV 
loss alone. Among them, Bayesian loss has the highest 
Acc and R2 in the RFRB dateset, up to 0.9098 and 0.9623, 
respectively. For the measures of MAE, rMAE, rMSE, 
and rRMSE, the bayesian loss has a lower value com-
pared with other loss methods. The better accuracy and 
less counting error illustrate the effectiveness of density 
contribution probability model constrained by bayesian 
loss.

To analyze the performance of the proposed net-
work, we compared its counting performance with 
some classical backbones combined with Bayesian loss. 
For each of these popular backbones, there are several 
networks with different hierarchical structures from 
which to choose. To ensure that the training results do 
not lose generality, we select network structures with 
the same magnitude of model capacity for comparison 

Table 3  Comparison of different losses on RFRB

Backbone Loss Acc MAE rMAE rMSE rrMSE R
2

Vgg19 OT 0.6499 108.07 10.40 128.08 38.77 0.6492

TV 0.7132 82.91 9.12 97.61 30.16 0.2587

MAE 0.8981 25.94 5.09 34.43 12.56 0.9512

MSE 0.9027 24.40 4.94 32.91 11.70 0.9534

DM 0.9014 24.43 4.94 32.38 12.99 0.9589

Bayesian 0.9098 22.90 4.78 31.95 12.15 0.9623

RapeNet+ OT 0.8306 45.31 6.73 60.69 19.75 0.8841

TV 0.4787 149.05 12.21 168.70 52.71 –

MAE 0.8733 37.06 6.09 49.67 14.32 0.8658

MSE 0.8896 29.96 5.47 42.27 13.47 0.9428

DM 0.9017 23.10 4.81 32.08 12.28 0.9613

Bayesian 0.9026 23.65 4.86 29.95 12.03 0.9635
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experiments, namely Mnasnet0_75 [52], Densenet121 
[53], Efficientnet_b3 [54], and Vgg19 [37]. These back-
bones are generally designed to perform tasks such 
as classification and segmentation. In the regression 
counting task of this paper, we need to change the tail 
structure of these backbone networks to output the 
counting results we want. We replace the classifica-
tion layer at the tail of these backbone networks with 
a regression layer that is consistent with the structure 
of the RapeNet proposed in this paper. The number of 
channels is adjusted according to the output of the pre-
vious network layer to better articulate the regression 
layer. For consistency, the data set allocation ratio was 
set to be the same, and 256×256 was used as input in all 
regression estimation networks.

The experimental results are shown in Table  4. We 
introduced the model capacity in addition to the basic 
evaluation metrics to further evaluate the model. It can 

be seen that the RapeNet series network model performs 
well on all evaluation metrics. Note that RapeNet+ has 
the lowest value of rrMSE 12.03 and the highest value 
of R2 0.9635. In particular, the capacity of the proposed 
RapeNet series is reduced by an order of magnitude, 
from 58.7MB to 5.8MB. In cases where the accuracy is 
the same, we use fewer parameters and a simpler network 
to complete the counting work.

Figure  10 shows the visual comparative result of the 
heat maps under six different skeletons. The enlarged 
subimages, including images of a dense part and a sparse 
part, come from the heat maps with the same location. It 
can be seen that the proposed methods pay more atten-
tion to flowers compared with other methods. The Rap-
eNet series distinguishes most of the overlapped rape 
flower clusters. Besides, it is clear which one is counted 
and which is not, providing a better explanation of the 
heat map. As a consequence, the counting results of the 

Table 4  Comparison of different backbones on RFRB

Methods Acc MAE rMAE rMSE rrMSE R2 Model capacity

Backbone Loss

Mnasnet0_75 Bayesian loss 0.7100 53.99 7.35 65.08 47.90 0.8278 20.8MB

Densenet121 0.8679 27.38 5.23 32.58 17.13 0.9568 53.2MB

Efficientnet_b3 0.9047 28.34 5.32 38.89 11.61 0.9385 58.7MB

Vgg19 0.9098 22.90 4.78 31.95 12.15 0.9623 86.0MB

RapeNet 0.8981 25.31 5.03 32.73 13.21 0.9566 4.9MB

RapeNet+ 0.9062 23.65 4.86 29.95 12.03 0.9635 5.6MB

Fig. 10  Visual results of different backbones on RFRB
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RapeNet series are closer to a manual count. The Rap-
eNet series is suitable for large-scale and high-through-
put counting of rape flower clusters.

Comparison of detection counting and regression counting 
methods
There are two different types of solutions for the count-
ing of rape flower clusters. One is an object detection 
technique that involves counting the number of bound-
ing boxes. Another promising paradigm is termed “object 
counting,” where plant counts are regressed directly from 
images without detecting bounding boxes [30]. To verify 
the counting performance of these two different types of 
methods on rape flower clusters, we performed experi-
mental validation on the rectangular box-labeled dataset 
RFRB.

Three classical detection networks, Faster-Rcnn, 
YOLOv4, and Centernet, were used to count rape flower 
clusters in the form of a detection bounding box. Faster-
Rcnn, as a typical two-stage target detection algorithm, 
discards the traditional sliding window and SS (Selec-
tive Search) methods. It chooses RPN to generate the 
detection box, which greatly improves the detection box 
generation speed. YOLOv4 combines the recent optimi-
zation strategies in the CNN field and optimizes the data 
processing, backbone network, activation function, loss 
function, etc. to achieve a good balance between detec-
tion accuracy and running speed. Through several exper-
iments, the bounding box confidence lower limit was set 
to 0.5 to get the most suitable counting box. The Center-
net network, as an excellent member of the anchor-free 
model, has the feature of a large output resolution with 
only four downsampling rates and a good detection 
effect for small targets. Similarly, the confidence lower 
limit value is set to 0.6 to obtain the counting frame after 
several trials. Two regression counting networks, Tas-
selNetV2+ and DM-Count, were counted as centroids. 
The four vertex coordinate values in the top, bottom, left, 
and right of the manual labeling frame are converted into 
one centroid coordinate value. Then, the centroid coordi-
nate values are used as labels for the counting study.

An input test image, a corresponding manually labeled 
image, and the effect plots and counting results of the 
outputs of six different methods are shown in Fig.  11. 
The results of three detection networks, Faster-Rcnn, 
YOLOv4, and Centernet, are shown in the form of detec-
tion boxes, and the results of two regression estimation 
networks, TasselNetV2+ and DM-Count, are shown in 
the form of heat plots. From the subimages in Fig.  11, 
we can see that there are more duplicate bounding boxes 
in the Faster-Rcnn detection results. It indicates that 
the network has poor detection and serious duplicate in 
dense flower area. We observed that YOLOv4 has more 

missed detection since the inability of the detection 
boxes to distinguish the edges of rape flower clusters. 
YOLOv4 is not sensitive to the detection of small and 
dense rape flower clusters in UAV images, especially for 
the more dense and heavily adhered obscured areas. This 
detection result is similar in UAV image target detection 
[55]. The Centernet network has a better detection effect, 
with fewer false detections and omissions, and the final 
count result value is closer with the manual count value. 
TasselNetV2+ and DM-Count perform comparably from 
the Fig.  11, and the count results do not deviate much 
from the manual count values.

Extended comparative experiments are shown in 
Table  5, which is about the performance of various 
counting methods on different assessment metrics in the 
test images of RFRB. We can see the Acc is above 0.87 
except for Faster−Rcnn. RapeNet series, TasselnetV2+, 
DM-Count networks outperformed Centernet, YOLOv4 
and Faster-Rcnn networks in terms of the values of each 
metric. Small and dense objects are prone to missed 
detection or error detection when using object detection. 
The indicators show the good applicability of the regres-
sion counting method in rape flower cluster counting. 
These are consistent with the conclusions of the visually 
observed results.

Results on RFCP
To further investigate the reliability of the counting, we 
conducted experimental validation on the RFCP dataset 
with the centroid labeled. It contains more dense rape 
flower clusters. Table 6 shows the results of each metric 
for DM-Count, TasselNetV2+, and the two regression 
networks proposed in this paper, RapeNet and Rap-
eNet+. Experimental results show that all four networks 
performed well on the RFCP dataset. The Acc metrics of 
the TasselNetV2+, RapeNet, and RapeNet+ networks are 
comparable, and the DM-Count network is slightly lower. 
The best values were obtained for MAE, rMAE, rMSE, 
rrMSE, and R2 metrics by the RapeNet+ network.

In order to verify the applicability of the proposed 
method in different resolution, we adjusted the input 
resolution of each group of networks by multiplying the 
original images by coefficients of 0.8 and 0.5, respectively. 
Table  7 shows the results of different resolutions on 
RFCP for each metric for DM-Count, TasselNetV2+, and 
the two regression networks, RapeNet and RapeNet+. 
The proposed networks and TasselNetV2+ counting pro-
posed in this paper have comparable performance at the 
original image resolution. At a factor of 0.8, the perfor-
mance has little change in indicators. When the factor 
is 0.5, the counting performance of the DM-Count and 
TasselNetV2+ networks degrade sharply. However, our 
proposed RapeNet and RapeNet+ networks maintain the 
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Fig. 11  RFRB experiment results visualization

Table 5  Comparison of different networks on RFRB

Methods Acc MAE rMAE rMSE rrMSE R
2

Faster-Rcnn 0.6562 58.96 7.68 76.79 55.90 0.5738

YOLOv4 0.8700 35.15 5.92 50.83 17.96 0.8491

Centernet 0.8958 26.23 5.12 33.61 13.69 0.9472

TasselNetV2+ 0.8984 26.58 5.16 34.72 13.09 0.9528

DM-Count 0.9014 24.43 4.94 32.38 12.99 0.9589

RapeNet 0.8981 25.31 5.03 32.73 13.21 0.9566

RapeNet+ 0.9062 23.65 4.86 29.95 12.03 0.9635
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performance at coefficients of 0.8 and 0.5, which is also 
due to the fact that our backbone is built from multilayer 
pyramidal convolution and can adapt to UAV rape cluster 
counting at multi-scale resolution.

Discussion
Developing low-cost, fast, and field-based counting 
methods to assess the number of flower clusters can 
improve the study of rapeseed phenotype and help estab-
lish a more comprehensive yield prediction model. The 
UAV path planning and control system can be used to 
easily obtain standardized and uniform high-resolution 
RGB aerial images of large fields. Then, the flower clus-
ter statistics of the corresponding field are obtained by 
analyzing the RGB images through the deep learning 
method. We collected datasets RFRB and RFCP contain-
ing 24 classes of rapeseed material in fields between 2021 
and 2022, including 51,136 manually annotated rectan-
gular boxes on the RFRB dataset and 104,391 manually 
annotated points on the RFCP dataset.

To count the number of rape flower clusters in a large 
field environment, we conducted an exploratory study 
of various counting methods, such as the target detec-
tion-based counting method. Target detection is trained 
by deep learning directly between the manually anno-
tated boxes and the corresponding images to derive a 

prediction model. Excellent detection networks such as 
YOLOv4, Faster-Rcnn, and Centernet work well in terms 
of evaluating metrics (Table 5). Centernet, as a traditional 
anchor-free model, is better at detecting flower clusters. 
However, labeling manually annotated rectangular boxes 
is difficult in dense clusters.

In the following experiment, we investigate a count-
ing method based on regression estimation. The center 
point annotation is relatively simpler and faster to oper-
ate. Tasselnetv2+ performs well on crop counts such as 
wheat ears and corn stamens. This deep learning net-
work has outstanding results on RFRB, with R2 up to 
0.95. Additionally, we use the DM-count in our experi-
ment, which is a classical method in crowd counting. The 
highly correlated results with manual counting demon-
strate(R2 = 0.95 ) that it is reliable to use the regression 
estimation method to complete the counting task of rape 
flower clusters. Consequently, we designed RapeNet and 
RapeNet+ to count rapeseed flower clusters.

The coefficient of determination ( R2 ) was exploited to 
reflect the fitting degree of the linear regression model, 
representing the interpretation degree of the total num-
ber of rape flower clusters in each plot to the seed yield. 
The count number of the rape flower clusters predicted 
by the proposed network model for each plot and the 

Table 6  Comparison of different networks on RFCP

Methods Acc MAE rMAE rMSE rrMSE R
2

DM-Count [34] 0.9464 30.53 5.53 45.16 7.04 0.9460

TasselNetV2+ 0.9502 22.77 4.77 32.91 5.66 0.9735

RapeNet 0.9544 25.87 5.09 33.21 5.39 0.9701

RapeNet+ 0.9573 22.96 4.79 27.41 4.82 0.9870

Table 7  Comparison of different resolutions on RFCP

Methods Resize Acc MAE rMAE rMSE rrMSE R
2

DM-Count 1.0 0.9464 30.53 5.53 45.16 7.04 0.9460

0.8 0.9417 27.17 5.21 32.20 7.25 0.9787

0.5 0.8747 60.32 7.77 64.65 14.03 0.9074

TasselNetV2+ 1.0 0.9502 22.77 4.77 32.91 5.66 0.9735

0.8 0.9558 22.99 4.80 31.55 5.69 0.9756

0.5 0.3282 356.56 18.88 373.30 67.47 −
RapeNet 1.0 0.9544 25.87 5.09 33.21 5.39 0.9701

0.8 0.9543 25.87 5.09 33.21 5.39 0.9701

0.5 0.9543 25.87 5.09 33.21 5.39 0.9701

RapeNet+ 1.0 0.9573 22.96 4.79 27.41 4.82 0.9870

0.8 0.9573 22.96 4.79 27.41 4.82 0.9870

0.5 0.9573 22.96 4.79 27.41 4.82 0.9870
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corresponding manual number were recorded to explore 
the correlation between them. We show the results of the 
RapeNet network and the RapeNet+ network in Fig. 12a 
and b. A strong correlation between manual count (MC) 
and inferred count (IC) is observed on the RFRB dataset, 
with an R2 of 0.9564 and 0.9635, respectively. This dem-
onstrates that most of the predictions are sufficiently 
accurate. Compared with RapeNet, the fitted curve 
of RapeNet+ is closer to 1:1. This is because the corre-
sponding model learned by RapeNet+ with the attention 
mechanism on this training set may generalize well to 
the testing set with significant variations in plant culti-
vars, illumination changes, and poses. On the whole, the 
RapeNet and RapeNet+ networks proposed in this paper 

perform well and can be used in the rape flower cluster 
counting.

The peak period of rape flowers has strong agronomic 
significance [11]. But Dense and adherent flowers make 
counting difficult. The counting performance of the 
DM-count method has decreased in RFCP as expected. 
TasselNetv2+ and the proposed RapeNet series 
improved a little in this case. Especially, the value of 
R2 in RapeNet+ is 0.98. Figure 13a and b further show 
the correlation between the RapeNet network and the 
RapeNet+ network in terms of manual counting and 
inferred counting. It can be observed that a lot of the 
counts are accurate. However, as the number of flowers 
increases, there are more counting errors, which shows 
that dense counting is indeed a difficult task.

Fig. 12  The coefficients of determination of a RapeNet and b RapeNet+ on RFRB

Fig. 13  The coefficients of determination of a RapeNet and b RapeNet+ on RFCP



Page 17 of 19Li et al. Plant Methods           (2023) 19:40 	

Figure  14 shows the performance of counting rape 
flower clusters under natural conditions in a large field 
scenario captured in 2022. The result illustrates the 
good counts for different types of rape flower clusters 
in different field areas. Flower clusters are quantified, 
which provides a good theoretical basis for agronomists 
and breeders to study the relationship between rape 
phenotype and yield.

Conclusions
Application of modern technologies to the management 
of rapeseed will greatly increase the harvest. It is also 
helpful for breeders to analyze the phenotypic traits of 
the material and breed for improved yield. In this paper, 
we discuss and validate the rape flower cluster count-
ing method on two rape flower cluster labeling data-
sets, Rape Flower Rectangular Box Labelling (RFRB) 
and Rape Flower Center Point Labelling (RFCP). The 
images used in the dataset were acquired remotely from 
the UAV with an RGB camera in a field. We proposed a 
RapeNet series networks using pyramidal convolution. 
RapeNet is a lightweight deep regression network that 
performs regression counting of rape clusters and com-
bines it with a Bayesian loss function for constraint. 
The proposed networks incorporate the advantages 
of mainstream regression estimation methods, which 
rely on powerful feature extraction capabilities. These 
improve the robustness of high-throughput counting 
in high-resolution images. Because overlap and adhe-
sion are more severe in densely clustered images of 
rape flower clusters. To further improve the accuracy of 
rape flower cluster counting, we extended the RapeNet 

to a network with a branch attention mechanism, Rap-
eNet+. Experiments show the proposed method can 
predict the number of rape flower clusters in a UAV 
image accurately. It also improves the applicability of 
deep learning-based counting networks in rape flower 
clusters with low-cost labelling. The comprehensive 
analysis of the experimental results shows that the pro-
posed methods count rape flower clusters in large field 
scenarios with high efficiency, which can better meet 
the requirements of practical applications and provide 
a new method for rape flower cluster counting. In our 
future work, we will continue to study the counting and 
the coverage of rape flower clusters in large field sce-
narios. We also tend to make full use of the comple-
mentarity of detection and regression counting models 
to investigate the cross-domain method based on 
detection-regression bidirectional knowledge migra-
tion to further improve counting performance. Addi-
tionally, the relationship between flowing data and the 
yield prediction model will be considered.
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