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by automated evaluation of cell characteristics 
and tissue arrangement using digital image 
processing
Nelia Nause1†, Facundo R. Ispizua Yamati1*†, Marion Seidel2, Anne‑Katrin Mahlein1 and Christa M. Hoffmann1 

Abstract 

Background  Cell characteristics, including cell type, size, shape, packing, cell-to-cell-adhesion, intercellular space, 
and cell wall thickness, influence the physical characteristics of plant tissues. Genotypic differences were found 
concerning damage susceptibility related to beet texture for sugar beet (Beta vulgaris). Sugar beet storage roots are 
characterized by heterogeneous tissue with several cambium rings surrounded by small-celled vascular tissue and 
big-celled sugar-storing parenchyma between the rings. This study presents a procedure for phenotyping heteroge‑
neous tissues like beetroots by imaging.

Results  Ten Beta genotypes (nine sugar beet and one fodder beet) were included to establish a pipeline for the 
automated histologic evaluation of cell characteristics and tissue arrangement using digital image processing writ‑
ten in the programming language R. The identification of cells has been validated by comparison with manual cell 
identification. Cells are reliably discriminated from intercellular spaces, and cells with similar morphological features 
are assigned to biological tissue types.

Conclusions  Genotypic differences in cell diameter and cell arrangement can straightforwardly be phenotyped by 
the presented workflow. The presented routine can further identify genotypic differences in cell diameter and cell 
arrangement during early growth stages and between sugar storage capabilities.

Keywords  Sugar beet, Histology, Histologic evaluation, Digital image processing, Phenotyping

Background
Imaging is a valuable data acquisition tool to evaluate 
spatial relations between anatomical structures [1]. Fur-
thermore, microscope imaging techniques and the intro-
duction of machine learning techniques in cell biology 
have enabled plant phenotyping at the cellular level [2]. 
Sugar beet plants are remarkably interesting objects for 
automated cell phenotyping because of its heterogeneous 
storage root tissue structure. Sugar beets comprise sev-
eral cambium rings surrounded by small-celled vascular 
tissue and big-celled sugar-storing parenchyma between 
the rings [3]. The vascular tissue is more robust in ten-
sion than the parenchyma, and the rings are denser in the 
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outer parts of the root, especially near the periderm [4, 
5].

For sugar beets, considerable genotypic differences in 
tissue strength have been detected, particularly in the 
puncture resistance of the periderm and the firmness of 
the underlying tissue [6, 7]. These differences influence 
damage susceptibility during harvest, pathogen infesta-
tion during storage, and sugar losses. However, little is 
known about tissue structure and cell characteristics 
influencing tissue strength so far.

Genotypic differences in the number and distance of 
the cambium rings have been described between sugar 
beet and fodder beet [8, 9]. Beta Vulgaris cultivars can 
be divided into four cultivar groups: Leaf Beet, Garden 
Beet, Fodder Beet and Sugar Beet [10]. These groups dif-
fer in stored sugar content, and therefore a large differ-
ence in the type, size, and number of cells [11]. Genetic 
differences in cell size are determined very early during 
plant development [12, 13], which could be helpful for 
the screening of genotypes in the context of breeding. 
So far, cell sizes must primarily be determined manually. 
Automated cell features extraction like size, shape, and 
wall thickness on microscopic images were run for dif-
ferent tissue types of a single vascular bundle in a sugar 
beet root after automatically clustering cells from indi-
vidual morphological features [14]. However, studies of 
cell sizes considering different genotypes and larger areas 
of the root storage containing different tissue types and 
several cambium rings have not yet been carried out.

For plant breeding, fast and objective methods for 
quantifying anatomical features are indispensable. In 
other sciences like medicine, cell counting, and classi-
fication is of high relevance, too, and is applied in high 
throughput scenarios [15, 16]. However, to our knowl-
edge, these methods are optimized to specific tissues 
showing distinct cell characteristics. The challenge in 
the use case beet root is the heterogeneity of cell char-
acteristics belonging to the same tissue type: e.g., a cell 
of the storage parenchyma of an outer ring has different 
characteristics than a cell of storage parenchyma which 
is closer to the center of the beet root. This requires to 
take into account the location of the individual cells 

within the tissue and is also the prerequisite to identify 
and count cambium rings. Moreover, the identification of 
intercellular spaces is not possible by size or shape. We 
are not aware of any example from medicine or other 
disciplines which are comparable to this setting. There-
fore, this study aimed to develop and compile a method 
for the automated evaluation of histological images by 
digital image processing for phenotyping of Beta geno-
types. Here, we provide an image analysis workflow, 
which (i) differentiates cells from intercellular spaces and 
image artifacts such as dirt, damaged plant tissues, or 
air bubbles, (ii) determines the number and position of 
cambium rings in sugar beet roots, (iii) identifies differ-
ent tissue types by subsequent clustering of morphologi-
cally similar cells, and (iv) extracts a set of morphometric 
data. The morphological data can then be used to distin-
guish the differences between the genotypes concerning 
their yield formation processes and their storability. The 
workflow was coded in R, a widely used free and open-
source programing language for scientific analysis, thus 
helping to integrate the image evaluation into statistical 
evaluation processes and to transfer this method to other 
laboratories, to this effect the code of the worflow and an 
example image can be found at the additional file section 
[1, 2].

Results
A schematic overview of all steps from sample prepara-
tion to phenotyping is presented in Fig. 1, where the dif-
ferent steps can be seen grouped according to their stage. 
First, the steps related to the preparation of the samples 
are mentioned, followed by the processing and analysis 
of the images. Afterwards the image clustering to finally 
obtain the phenotypic information is presented (Addi-
tional file 2).

Sample preparation
For each of the ten genotypes, four cuboids from indi-
vidual beet roots were embedded in paraffin. At least 
three sections per beet root were used for staining and 

Fig. 1  Schematic overview of subsequent steps from sample preparation to phenotyping. The process involves sample preparation, image 
preprocessing, image processing, clustering, and phenotyping
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one representative section was chosen for image acquisi-
tion and further processing as described in material and 
methods.

Preprocessing of images and definition of the region 
of interest (ROI) by identification of non‑tissue containing 
areas and objects touching the edges of the image
As a preprocessing step, every original image (Fig.  2A) 
was converted to grayscale. Furthermore, interluding, 
noise reduction, and opening were carried out as recom-
mended and described in [17]. However, at the filtering 
and opening steps, the parameters of each function were 
slightly adapted to our images, using a value of sigma = 2 
for the standard deviation of the Gaussian filter and by 
selecting the brush shape = disc, with size 18 and 21 
respectively for the first and second opening cycle. Also, 
automatic thresholding (Otsu method, [18]) was applied. 
At this point, the images were converted to black and 
white (Fig. 2B).

Elimination of irregular edge of the peridermal area
Due to the rounded shape of the periderm, each image 
shows areas of the image that could not contain any bio-
logical target tissue. For the correct functioning of the 
workflow, the periderm should be oriented towards the 
left edge of the image. Figure 2A* shows an example of an 

irregular edge. This area is prone to hold air bubbles and 
other materials that are potential artifacts. Therefore, it 
is necessary to mask and remove this area before starting 
the process inside the target tissue material.

For identification and removal of this area, only the 
first 5% from the left image border towards the right are 
considered to keep the workflow efficient. A high open-
ing (erosion followed by dilatation; brush = 50) and hole 
filling identified the objects of interest. Holes are defined 
as areas of dark pixels surrounded by lighter pixels [19]. 
This area is removed from the processed black and white 
image.

Removal of cells touching the edges of the image
At the edge of the images, incomplete cells can be seen 
because parts of the cells are lying outside of the photo-
graphic frame; those cells are considered as “edge-touch-
ing cells”. To assess cell sizes, it is necessary to consider 
only complete cells; therefore, partial cells touching the 
edge must be eliminated.

Objects whose pixel reach the edge of the image were 
identified using a process proposed by the Bioconductor 
project [20]. The process created a mask of the objects 
belonging to the border and another mask with the 
objects not belonging to the boundary. The number and 
morphological features of the identified edge-touching 
objects were documented. The information of the left 

Fig. 2  A–F Subsequent stages of image processing. A: The starting image, stitched and aligned from several light microscopy images of 
fuchsin-chrysoidine-astra blue (FCA)-stained transverse section of paraffin-embedded storage root tissue of sugar beet. A*: sample of an irregular 
edge. B: the same image as in A after subsequent image preprocessing, including thresholding (Otsu), opening, and hole filling. C: Cells touching 
the picture’s edges are excluded from the analysis. D: After edge removal. D*: Magnified example of a damaged cellular wall enclosure area (red 
lines represent the artificially closed area). E: Individual objects are identified by watershed segmentation and are labeled by different colors
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edge was merged with the incomplete edge cells to per-
form the edge feature calculation (Fig. 2C).

The region of interest (ROI) is the area after removing 
non-tissue-containing sites and edge-touching objects 
from the original image. Finally, the ROI was reapplied to 
the grayscale image to continue processing (Fig. 2D).

Closing damaged cells and final individual features 
extraction
Due to the delicate nature of cells, cells might be dam-
aged during the preparation process of the tissue sec-
tions, and their surface becomes connected. The 
watershed algorithm allows cell walls to be rejoined. 
Therefore, it is necessary to generate a matrix with each 
pixel’s distance inside the cells from the nearest cell wall 
pixel before determining the watershed. In our matrix, 
the cell interior is considered the foreground and the cell 
wall the background. The distance was computed with 
the distance map function (Distmap) in the Euclidean 
way.

The watershed algorithm segments the ROIs, and each 
object’s morphological features were calculated. The area 
corresponding to the cell membranes and the site of the 
cell interior was determined in this step. In the tissue 
density image (Fig.  2D), high values (black) correspond 
to cell membranes, and low values (white) to the back-
ground. The amount of cell membrane per image was 
determined. With the function “ComputeFeatures” of the 

EBImage package, each segmented object’s morphologi-
cal information or features in the images were extracted 
into a table. This table consists of data (columns) for each 
detected object (lines or rows) in the image. The fol-
lowing information about the shape was recorded: area, 
perimeter, mean radius, the standard deviation of the 
mean radius, max radius, and min radius. The informa-
tion about the object image moments contained the 
center of mass x, mass y, elliptical fit major axis, elliptical 
eccentricity, and object angle.

The diameter of each cell was calculated as 2*mean 
radius; the conversion from pixel to micrometer 
was calculated as diameter multiplied by the factor 
1.015228, representing the pixel size for the image on the 
10 × microscope used.

Identification of number and position of cambium rings
The cell diameter and the distance of the cells from the 
left edge of the image is shown in Fig.  3. The beetroot 
tissue is composed of cells of different sizes. The maxi-
mal cell size increased from the outer part of the beet 
on the left towards the inner part on the right. The dis-
tribution of cell sizes along the x-axis represents the 
alternating occurrence of small-celled areas where the 
cambium rings are located and big-celled regions stor-
ing parenchyma. Using part of the code and algorithm 
suggested by [21] using the S3 Infrastructure for Regu-
lar and Irregular Time Series from ZOO package [22], 

Fig. 3  Detection of cambium rings and automatic rings spacing of sugar beet roots. The upper part shows a stitched and aligned image from 
several light microscopy image of fuchsin-chrysoidine-astra blue (FCA)-stained transverse section of paraffin-embedded storage root tissue of sugar 
beet. The histogram shows cell diameter as a function of distance from the left edge. The red dashed lines represent the cambium rings (peak) and 
the blue dots represent the center between two adjacent rings (valley)
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the position of the peaks (storing parenchyma) and val-
leys (cambium rings) in the histogram were determined. 
Peaks were detected after the application of smoothing to 
find the local maximum (using as window width value of 
w = 150 and as a span argument for the loss function of 
span = 0.2). Valleys were detected using the same method 
after inversion of the y-axis. In addition to the position, 
the number of cambium rings was also computed by 
numbering them from left (outermost ring) to the right 
starting with 1.

Detected valleys and peaks are listed and numbered 
from the left edge inwards. Thus, it is possible to classify 
the cells between which the number of valleys or peaks is 
found. This information was added to the table obtained 
by ComputedFeature. This additional information allows 
the differentiation of cells into smaller groups during 
clustering. For example, there are usually relatively small 
cells in areas close to the epidermis. In this area, the pres-
ence of a cell of a slightly more significant size than the 
surrounding cells will not be identified as different if this 
is analyzed and compared with the cells of the whole 
sample; however, when determining clusters between the 
cambium rings, that distinct cell will be identified.

Distinction between real cells, intercellular spaces, 
and artifacts
After segmentation, several objects did not necessar-
ily represent cells. This was due to biological reasons 
like voids occurring between adjacent cells (intercel-
lular spaces) as well as artifacts generated due to the 
nature of the image itself or the filtering process by 

over-segmentation. For the identification of as many of 
these non-real objects or spaces as possible and their 
subsequent elimination from the analysis, different strat-
egies were used, as explained below.

First, all objects of small size were dropped for the dif-
ferentiation of cells from non-cellular objects. To accom-
plish this, the threshold valleys function of the benmack/
threshold package was used. First, a frequency histogram 
of the size of the objects was determined based on the 
log10 (diameter) of the features (Fig. 4). If the frequency 
deviates from a normal distribution by showing two 
peaks, the benmack/threshold package determines the 
intermediate point between the two peaks. This point is 
the valley of the curve and the newly determined cut-off 
point to drop the lower outlier that escapes the normal 
distribution. Objects with a log10 (diameter) below the 
threshold value were eliminated. If no threshold point 
was found, a value of 0.5 was used, standing for a diame-
ter of 3 µm. If valleys were located above 0.8, 0.8 was con-
sidered the new value threshold to avoid dropping viable 
cells.

The remaining objects can either be cells or intercel-
lular spaces. Careful microscopic examination of the tis-
sue revealed that the intercellular spaces mainly occur 
between large cells (Fig.  5). They might be bigger than 
small cells in other tissue areas, and they can have quite 
different shapes. However, the intercellular spaces of 
beetroots are always smaller than the surrounding cells.

For each object a subsequent analysis of the neigh-
boring objects was performed in a two-step-process to 
identify the intercellular spaces. First, outlier detection 

Fig. 4  Histogram of cell diameter (log10) to determine the threshold for removing small objects. Bars represent the cell frequency for each 0.1 µm 
distance from the left border of the slide, the red line represents the continuous derived distribution, and the blue line is the automatic threshold 
delimitation of the two peaks of the curve (valley)
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analysis was conducted based only on the diameter 
parameter of neighboring cells. Therefore, based on the 
x and y coordinates of the objects, the p nearest neigh-
bors were identified by the k-dimensional tree (nn2 
function of the RANN package). The maximum number 
of nearest neighbors to compute was set as default to 
k = 6. Based on the distance of the neighboring objects 
to the object of interest, quantiles (Q) and Interquartile 
Range (IQR) were calculated. Objects with a gap above 
Q2 + 1.5 * IQR were not considered as direct neighbors 
of the object of interest. Quantiles and IQRs were cal-
culated for log10 of the diameter of the object of inter-
est and its immediate neighbors. Objects with a log10 
(diameter) below the Q1—1.5 * IQR were considered 
as outlier and probable intercellular space. They were 
removed from the dataset, while all remaining objects 
were initially defined as cells.

The second, most resource-demanding strategy, is 
the clustering of the cells based not only on the diam-
eter, but on all the morphological features obtained 
with “ComputedFeature” (except for data concerning 
the cell´s position; x and y, and the information about 
the ring number each cell is assigned to). Based on the 
possibility that there may remain 3 possible types of 
objects, respectively large cells, small cells and intercel-
lular spaces, a clustering with 3 clusters was performed. 
Before clustering, the cambium rings and their cells 
belonging to each zone were determined and num-
bered. All input data was centered and scaled with the 
R base function “scale”, followed by a k-means cluster-
ing from the Stats package was used with a random set 
of 25 (nstart), maximum iteration of 1000 (iter.max), 
and 3 different clusters (centers). Since the cluster 
value assignment (1, 2 or 3) in this function is random, 
a reclassification is needed to achieve that different 
images always receive the same order of cluster values. 
It was determined that the smallest cells should con-
tinuously be assigned a value of 1, and the largest cells 
should always be assigned a value of 3. After obtaining 
the clusters, the cells were repositioned in the matrix, 

and the neighboring cells were analyzed again, using 
the Kd-tree, with the difference that, in this case, the 
neighborhood of the different types of clusters was 
analyzed. Considering that when the cells surrounding 
the cell under analysis are large, and this analyzed cell 
is small, the "cell" is considered as intercellular space. 
The number of cells that can surround an intercellular 
space is variable, and many possibilities and combina-
tions are found. Therefore, two different criteria were 
used for the identification of intercellular spaces: (1) 
Small objects, assigned to cluster 1 surrounded by big 
cells assigned to cluster 3 (Fig.  6A). (2) Small objects, 
assigned to cluster 1 surrounded by a majority of cells 
assigned as cluster 3 but some cells as cluster 2, for 
instance, three as cluster 3 and one as cluster 2 as dis-
played in Fig.  6B. The decision if the central cell is an 
intercellular space requires the definition of "major-
ity". Therefore, the following parameters are required: 
Number of surrounding cells, sum (SUM) and mean 
(MEAN) of the assigned cluster values of the surround-
ing cells; and the possible maximum sum (MAX) that 
could be obtained if all surrounding cells were assigned 
to cluster 3 (number of surrounding cells * 3). If SUM 
is greater or equal than MAX minus MEAN, the cen-
tral cell can be considered an intercellular space and be 
deleted from the dataset. The entire table is continu-
ously analyzed until no outlier is found.

Final clustering and tissue discrimination
After removal of the identified intercellular spaces, in 
theoretical perspective, two groups of cells remain in the 
dataset, the small and the large cells, representing the 
two main tissue types of beet roots, vascular tissue and 

Fig. 5  Light microscopy image of fuchsin-chrysoidine-astra blue 
(FCA)-stained transverse section of paraffin-embedded storage root 
tissue of sugar beet. Lignified parts appear red, and non-lignified 
segments are blue. Red circles indicate intercellular spaces of different 
shapes

Fig. 6  Cluster assignment. A: intercellular space classified as cluster 
1 and surrounded by cells of cluster 3. B: intercellular space classified 
as cluster 1 and surrounded by different clusters. Cells classified as 
cluster 1 are marked in green, cluster 2 in blue, and cluster 3 in red. 
Cell walls are marked in black
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storage parenchyma. Therefore, a new k-means cluster-
ing with the remaining data was performed, with a ran-
dom set of 25 and maximum iteration of 1000, but this 
time with two clusters. As during 3-cluster clustering, 
the cluster number assignment is random, and a reclas-
sification based on size is required, always assigning 1 to 
the smallest and 2 to the largest cells. The two classes of 
cells identified by digital image processing are marked in 
distinct colors in Fig. 7. The two clusters discriminate the 
two biological tissue types, as cluster one (green) mainly 
holds vascular cells, while cluster two (blue) mainly 
holds big cells of the storage parenchyma. To facilitate 
understanding and differentiate the cluster names with 
the 3-cluster clustering, small cells reclassified with 

cluster 1 will be assigned the letters VT for vascular tis-
sue and cluster 2 will be assigned the letters SP for stor-
age parenchyma.

Gathering and storing data
After completion of the clustering process, a table with 
the generated data was created; additionally, the name of 
the image file and extra information, such as the amount 
of the cell walls, were recorded in the new table. The 
amount of cell walls in the images (variable name: cell-
wallcount) was determined as the sum of all black pixels 
within the ROI of the black and white image, thus repre-
senting all pixels within the ROI excluding the cytoplasm 
and intercellular spaces. Afterward, the whole process 

Fig. 7  First 6 mm from the periderm (left side) towards the center of sugar beet root tissue (right side). A: stitched and aligned image from several 
light microscopy images of fuchsin-chrysoidine-astra blue (FCA)-stained transverse section of paraffin-embedded storage root tissue of sugar beet. 
B: Two groups of cells were identified, mainly reflecting the vascular tissue (green) and the storage parenchyma (blue)

Table 1  Variables contained in the final master table of the digital image analysis

The final master table comprises all relevant data generated at different points in the process. Morphometric variables were measured by the ComputeFeature 
function. These variables were used to calculate further variables during preprocessing, processing, and clustering. For each variable, the name and a description were 
included

From computefeature From preprocessing, processing, and clustering

Variable name Description Variable name Description

s.area Area size Meandiameterµm Diameter average calculated in µm

s.perimeter Perimeter Diameter_log log10 of diameter

s.radius.mean Mean radius Q1 First quantile

s.radius.sd Standard deviation of the mean radius Q3 Third quantile

s.radius.max Max radius IQR Interquartile range

s.radius.min Min radius nmbpeak Number of peaks

m.cx Center of mass x nmdeep Number of valleys

m.cy Center of mass y Cluster_drei Classification of three clusters

m.majoraxis Elliptical fit major axis Cluster_zw Classification of two clusters

m.eccentricity Elliptical eccentricity Imagetotalpix Total image pixels

m.theta Object angle Innerpixarea Total pixel ROI

order Original order of cell sequence Cellwallcount Total pixel of cell wall

Intercellcount Total pixel of cell spaces

Dataname Image name
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was restarted with the next image in the list of images 
to analyze. The tables generated for each image are com-
piled into a final master table that contains all the accu-
mulated information of all the images contained in the 
image list (Table 1).

Validation
The correlation between manual cell counting (Ground 
truth) and automated counting of sugar beet root cells 
(objects after watershed segmentation and final cell 
count) is illustrated in Table  2. In the set of reference 
images (one image for each of the ten genotypes), 15100 
cells were identified in total by manual identification 
(ground truth), while 16790 were identified by automated 
image processing (final cell count). The coefficient of 
determination was 0.98.

The applicability of the final clustering with two clus-
ters was also assessed by expert interpretation of the 
groups regarding the known histology of the sample. It 
was confirmed that the clusters detected as one and two 
during clustering represented VT and SP, respectively.

Phenotyping of different Beta genotypes
The first 6  mm from the periderm of ten Beta geno-
types, nine sugar beet and one fodder beet, have been 
phenotyped based on the final data table created within 
the pipeline. An average of 4081 (genotype 10) to 7259 
cells (genotype 7) were identified from the four sam-
ples per genotype. The maximal cell diameter in fodder 
beet was 129 ± 14 µm, and for sugar beet, it ranged from 
72 ± 19  µm in genotype 9 to 112 ± 23  µm in genotype 
4. The mean cell diameter was highest in fodder beet 
(21.8  µm, genotype 10). In sugar beet, it ranged from 

Table 2  Validation of cell identification by comparison of the number of cells in ten microscopic images of sugar beet roots using 
manual counting

Genotype Objects after watershed 
segmentation

Final cell count Objects removed (%) Ground truth

1 2688 2615 3 2562

2 1722 1517 12 1586

3 610 450 26 295

4 755 571 24 322

5 3203 2990 7 2911

6 2075 1914 8 1454

7 3488 3332 4 3106

8 1282 1138 11 1047

9 1850 1641 11 1403

10 737 622 16 414

Correlation to ground truth (R2) 0.9798 0.9815

Table 3  Cell characteristics of the distal 6 mm of root tissue of ten Beta genotypes; 1–9: sugar beet, 10: fodder beet

Automatic determination from microscopic images of cell tissue with four samples per genotype. Mean and SD of the four images per genotype are indicated. MSD: 
minimum significant difference calculated by HSD test, alpha = 0.05. Different letters indicate significant differences between genotypes (p<0.01)

Genotypes Number of cells Max cell diameter 
[µm]

Mean cell diameter 
[µm]

Number of cambium 
rings

Amount of cell wall 
material [% of ROI 
pixels]

1 6046 ± 747ab 82 ± 6ab 18.3 ± 1.1ab 4.5 ± 0.5a 0.35 ± 0.0076ab

2 6036 ± 1326ab 87 ± 13ab 18.3 ± 2ab 5.75 ± 1.2a 0.35 ± 0.0140ab

3 5319 ± 513ab 90 ± 10bc 19.5 ± 1.11ab 5.75 ± 0.5a 0.35 ± 0.0097ab

4 5174 ± 243ab 112 ± 23ab 19.2 ± 0.62ab 5.5 ± 0.58a 0.35 ± 0.0066ab

5 6288 ± 986ab 90 ± 11ab 17.7 ± 1.67ab 5.75 ± 0.96a 0.36 ± 0.0169a

6 6949 ± 1777ab 81 ± 19ab 17.0 ± 2.38b 5.25 ± 1.2a 0.37 ± 0.0162a

7 7259 ± 433a 76 ± 14c 16.6 ± 0.68b 5.25 ± 1.2a 0.36 ± 0.0037a

8 5844 ± 1405ab 88 ± 23ab 18.6 ± 2.28ab 6.0 ± 1.6a 0.35 ± 0.023ab

9 7052 ± 1649a 72 ± 19c 16.8 ± 2.44b 6.25 ± 0.9a 0.37 ± 0.0213a

10 4081 ± 998b 129 ± 14a 21.8 ± 3.13a 5.5 ± 1a 0.32 ± 0.0201b

MSD 2713 31.8 4.6 2.5 0.037



Page 9 of 14Nause et al. Plant Methods           (2023) 19:35 	

16.6 µm (genotype 7) to 19.5 µm (genotype 3). The num-
ber of cambium rings in the 6  mm root tissue ranged 
from 4.5 (genotype 1) to 5.75 (genotypes 2, 3, and 5). Sta-
tistically, significant differences occurred for the number 
of cells and the mean cell diameter, but not for the num-
ber of cambium rings (Table 3).

The mean cell diameter was significantly negatively 
correlated to the number of cells per genotype (R2 = 0.98, 
p ≤ 0.01) and to the amount of cell wall material identi-
fied in the microscopic images (R2 = 0.96, p ≤ 0.01; data 
not shown).

The distribution of cell sizes in the 6 mm distal root tis-
sue per genotype is shown as Kernel density estimate in 
Fig. 8. All genotypes showed a peak at cells with a diam-
eter of approximately 12  µm. The comparison between 
genotypes showed that this cell diameter had the high-
est abundance in genotypes 6, 7, and 9, and the lowest in 
genotypes 3, 4, and 10. At larger cell diameters, this rela-
tion changed, and genotypes 3, 4, and 10 had the high-
est abundance of cells with a diameter above 30 µm, and 
genotypes 6, 7, and 9 had the lowest.

For each genotype, most cells were assigned to cluster 
VT. Only a small variation between genotypes was found 
in the ratio of cluster VT to cluster SP, 73% (genotype 9) 
to 79% (genotypes 4 and 10) of the cells assigned to clus-
ter VT (Fig. 9A). Due to the smaller cell sizes, however, 
cluster VT only took up 28% (genotype 10) to 37% (geno-
type 7) of the image area (Fig. 9B). The mean cell size was 
calculated separately for each cluster and genotype. Gen-
otypic differences in cell size were more pronounced in 
cluster SP than in cluster VT (Fig. 9C). The ratio of clus-
ter VT to cluster SP was relatively stable across genotypes 
(number of cells, 9 A, and tissue area, 9 B). Genotypic 

differences in cell diameter were more pronounced in the 
storage parenchyma (cluster SP; 9 C).

For the similarity analysis of the genotypes in a den-
drogram, the values of each image belonging to the final 
master table (Table 1), with exception of the centers of 
mass, Q1, Q3, IQR, file name and the original order of 
cell appearance, which were not considered for analysis. 
For the other variables, the mean, standard deviation, 
and maximum and minimum value were calculated. 
The distance-based dendrogram revealed two branches 
at a distance of 7.98, where genotype 10 (fodder beet), 
differs from the other nine sugar beet genotypes. For 
sugar beet, two large groups could be distinguished in 
which genotypes 9, 6, and 7 belong to one group, and 
the remaining genotypes to the other group (Fig. 10).

The image analysis by an automated digital workflow 
with other phenotypic characteristics facilitates the 
identification of relevant cell characteristics and allows 
an extended phenotyping, which enables breeders to 
select for low damage susceptibility of sugar beets dur-
ing harvest and low sugar losses during storage. A com-
prehensive phenotyping of the ten genotypes is out of 
the scope of this work, but we have calculated the cor-
relation between puncture resistance of the beet roots 
(as indicator for their storability) and mean cell area 
as an example. Even though puncture resistance was 
measured on representative beets of the same genotype, 
but not on the individual beet used for image analysis, 
the correlation coefficient (R2 = 0.606, p ≤ 0.01; data not 
shown) shows a clear correlation between cell size and 
sugar beet tissue strength.

Fig. 8  Kernel density estimate of the cell size distribution in the distal 6 mm of root tissue of ten Beta genotypes; 1–9: sugar beet, 10: fodder beet; 
four samples per genotype. The height of the curve is scaled such that the area under the curve equals one. The density estimate was performed 
with a Gaussian kernel and a bandwidth of 1
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Discussion
This study aimed to develop and compile a method 
for the automated evaluation of histological images by 
digital image processing for phenotyping of Beta gen-
otypes. The provided image analysis workflow over-
comes various difficulties in differentiating cells from 
intercellular spaces and image artifacts, determining 
the number and position of cambium rings in sugar 
beet roots, and identifying different tissue types. The 
workflow was developed and optimized for histologi-
cally evaluating sugar beet tissue. However, it can also 
easily be adapted for other tissues (evaluated with other 
root tissues, data not shown). It should be noted that 
despite the high performance of the algorithms to dif-
ferentiate cells, some intercellular spaces and cells may 
even be misclassified. Also, the closure of broken cells 
may be the source of some artifacts due to over- and 
under-closure. Many of these algorithm confusions are 
determined by the quality of the sample preprocessing 
and the quality of the camera on the microscope.

In the following, we will discuss some possibilities of 
adjustments of the workflow for further research goals 
or other tissue types.

For automatic cell identification, discrimination 
between cells and intercellular spaces is indispensable. 
Typically, the shape of intercellular spaces differs from 
that of cells since a cell in contact with a void exhibit’s 
convexity due to its internal pressure. Therefore, inter-
cellular spaces are deflated due to the convex surface of 
the inflated neighboring cells. Convexity can be quan-
tified by conventional object descriptors [23], but they 
are not necessarily sufficiently discriminating to reli-
ably identify intercellular spaces [24]. Pieczywek et  al. 
[25] used circularity and shape roughness for sepa-
rating cells from intercellular spaces in apple tissue. 
Remarkably, the new approach of comparing the sur-
rounding cells with the ROI enabled the integration of 
differently shaped intercellular spaces in the heteroge-
neous sugar beet tissue. The close correlation of the cell 
numbers derived by automated and manual counting 

Fig. 9  Allocation of the distal 6 mm of sugar beet root cells to clusters based on their morphological features. Genotype 1–9: sugar beet, 10: fodder 
beet. Cluster VT mainly represents vascular tissue; Cluster SP mainly represents storage parenchyma. A: percentage of cells per cluster, B: percentage 
area per cluster, C: mean cell diameter per cluster
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shows the high precision of this type of automated cell 
identification.

In histological images, the cell wall thickness is fre-
quently of interest. However, it is difficult to measure it 
accurately due to its small size and non-uniformity, being 
thinner in its middle area than around its edges. Moreo-
ver, some cell walls may be inclined to the cutting surface, 
and some cuttings may be right through plateau bor-
ders. As a result, measured wall thickness may be slightly 
larger than the actual thickness of cell walls. As shown by 
Chen et al. [26], it is possible to reduce the errors induced 
by the non-uniformity of cell wall thickness by taking 
measurements near the middle area of cell walls where 
thickness is relatively uniform, and the error induced by 
cell wall inclination by carefully selecting cell walls that 
seem vertical to the cutting surface while measuring. 
However, this procedure is not suitable for an automated 
evaluation of big datasets. Guillemin et  al. [14] used 13 
images for the analysis of one vascular bundle of beet-
root. With this resolution, the cell wall thickness could be 
determined for each cell. Travis et al. [27] estimated cell 
wall thickness by a similar procedure after a watershed 
segmentation. This approach simplifies extracting cell 
wall thickness profiles by collecting all measured values 
through the distance function along the skeleton, which 
would reveal local thickness variations within the cell 
perimeter. To keep the workflow efficient, a lower image 
resolution than required for such attempts, was used. If 

required, a determination of the cell wall thickness could 
be integrated into our workflow. A much more straight-
forward approach, not requiring high-resolution images, 
was used by Cybulska et al. [28], who assessed a "cell wall 
fraction" as the ratio of the total length of the perimeters 
of all objects and the summarized area of objects. In the 
presented study, the amount of cell walls in the images 
was determined as the sum of all black pixels within the 
ROI of the black and white image, thus representing all 
pixels within the ROI excluding the cytoplasm and inter-
cellular spaces.

Estimating cell sizes from microscopic images under-
lies three interrelated types of bias: 1. Small cells are less 
likely to be caught by the tissue slice than large cells, 2. 
The measured cross-sectional cell radius is likely smaller 
than the actual cell radius since the cross-section does 
not pass precisely through the center of the cell, and 3. 
The imaging software has a cut-off parameter that pre-
vents the measurement of cells below the cut-off. As 
shown by Lenz et al. [29] correcting these types of biases 
is possible by estimating tissue cell size and type. So far, 
the underlying shape and the real cell size distribution is 
unknown for sugar beet roots. We have refrained from 
correcting the measured cell size, as in other published 
studies of sugar beet roots, no adjustment was made 
either for real cell size [5, 9, 12, 14, 30, 31].

The creation of tables containing all generated data 
simplifies the calculation of additional study-specific 

Fig. 10  Dendrogram to visualize the similarity based on Earth Mover’s Distance between Beta genotypes after digital image analysis of the distal 
6 mm of root tissue. Genotype 1–9: sugar beet, 10: fodder beet. The Distance score between different genotypes is represented on the x-axis, and 
the different genotypes are displayed on the y-axis. The number of randomly computed permuted scores = 100 and n = 40
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parameters and the data usability in subsequent statisti-
cal analysis. In this study, the data were used for pheno-
typing of different Beta genotypes. Between genotypes, 
even in the distal 6  mm of root tissue statistically sig-
nificant differences were evaluated for the number of 
cells and the mean cell diameter. Different tissue types 
were identified by clustering. Cluster 1 mainly contains 
vascular cells, and cluster 2 mainly contains cells of the 
storage parenchyma. For vascular cells, there is no size 
reference yet. The cell sizes measured in the storage 
parenchyma were on the lower end of the range reported 
in other studies [9, 30, 31]. This was mainly influenced 
by the fact that in the presented workflow, only the first 
6 mm from the periphery to the center were considered. 
This resulted in a lower mean cell diameter than for more 
centered tissue of the beetroot, or for a cross section of 
the entire tissue due to the fact that the cell size increases 
towards the center of the beetroot [3].

The relationship of cellular characteristics identified 
with the presented workflow and the mechanical tissue 
properties of sugar beet genotypes is concordant with 
descriptions by [6, 7].

Although it is known that at least sugar beet and fod-
der beet differ in their total number of cambium rings [8, 
9]. In the outer 6 mm of beetroot tissue, no statistically 
significant differences were observed, neither between 
sugar beet and fodder beet nor between different sugar 
beet genotypes. Hence, for the analysis of the number of 
cambium rings, a larger area of tissue, probably ranging 
from the periderm to the center of the beetroot must be 
observed.

Conclusion
Overall, the results describe a workflow which offers a 
substantial benefit for digital image processing, as it ena-
bles an automated evaluation of histological images of 
extremely heterogenous sugar beet root tissue. The find-
ings of this study can be understood as a confirmation 
of measuring features of the images in a fully automated 
manner. Compared to manual analysis, information can 
be extracted more efficiently within a short time and 
without any subjective bias. Additional use cases include 
other plant tissue phenotypic analysis workflows, as this 
approach can be integrated effortless.

This is a promising approach to supplying quantita-
tive information, which can be used in further statisti-
cal analysis for phenotyping of different Beta genotypes. 
algorithm delivers cell-intrinsic information that makes 
it possible to analyze differences in cell characteristics 
and arrangement between genotypes. This opens a broad 
spectrum of possibilities to improve phenotypic tissue 
characterization, which in case of Beta genotypes are 
also related to yield formation [3, 12]. A subsequent study 

must consider the potential contribution of the cellular 
characteristics identified with the presented workflow to 
mechanical tissue characteristics.

Material and methods
Beet samples
In 2020, nine sugar beet genotypes provided by SESVan-
derHave, Belgium, differing in sugar content and root 
yield (genotypes 1–9) and one fodder beet (genotype 
10) were grown in a field trial at Sieboldshausen, Lower 
Saxony, Germany. All genotypes were cultivated in a ran-
domized block design with four replicates. After harvest, 
the beet tissue was immediately prepared for microscopic 
analyses in October.

Sample preparation and analyses
Microscopic analyses
The beetroots were pre-sectioned to cuboids with an 
edge length of approximately 1 × 1 × 2  cm, whereby an 
area of 1 × 1 cm holds the periderm of the beetroot, and 
the 2 cm were oriented towards the center. The cuboids 
were fixed in AFE (90% alcohol (ethanol, 96%), 5% for-
malin (37%), 5% acetic acid (100%)) until embedding, at 
least for 1 week. Subsequently, the tissue was transferred 
to 70% EtOH overnight, followed by increasing concen-
trations of isopropanol (70%, 80%, 90%, 100%; 1 day per 
concentration), xylene (100%; 72 h at RT, 48 h at 60 °C), 
xylene:Paraplast (Leica Biosystems, Richmond, IL, USA) 
[1:1 (v/v)] 24  h at 60  °C. The xylene:Paraplast mixture 
was replaced with pure Paraplast and incubated for 7d 
at 60 °C. Specimens were embedded in Paraplast. Blocks 
were cooled to 4  °C for unmounting and sectioning. 
10 µm thick slices were sectioned on a sledge microtome. 
Sections were stretched in a water bath at 42  °C, trans-
ferred to glass slides, and dried at room temperature, at 
which they were stored until staining.

Tissue sections were deparaffinized with xylene and 
rehydrated by incubation with decreasing concentra-
tions of EtOH (100%, 96%, 70%, 50%, 30%; 2  min each) 
and 3 × 3 min H2O. Sections were stained with Fuchsin-
Crysoidin-Astral Blue (FCA or Etzold; Morphisto GmbH, 
11742.00100) for 7 min and washed with H2O (3 × 2 min) 
and isopropanol (30 s). The stained sections were covered 
with Euparal (Carl Roth GmbH & Co. KG, 7356.1) and 
coverslips.

Brightfield images were acquired using a Zeiss micro-
scope (Axio Scope.A1) with a 10 × magnification lens, a 
Moticam Pro camera (1024 × 1360 pixels per image), and 
the software Motic Images Plus (version 3.0) at a scale of 
1.015228  µm/pixel. The acquisition of adjacent images 
was needed to observe a representative sample area. 
Mosaic images were reconstructed from 6–7 adjacent 
images using the Image Composite Editor (Microsoft, 
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version 2.0.3) to attend a representative sample area. All 
mosaic images were cropped to equal size (5910 × 690 
pixels, corresponding to approximately 6 × 0,7 mm) and 
saved in TIFF format in the same orientation, with the 
periderm of the beetroot touching the left margin of the 
image.

Data analysis
The R statistical computing environment [32] was used 
for data analysis. In particular, the following packages 
were used: The Image processing and analysis toolbox for 
R EBImage [33, 34], together with the support provided 
by the Bioconductor project [35], benmack/threshold 
for thresholding based on peak and valley of a histo-
gram curve analysis [36], Fast Nearest Neighbour Search 
(RANN) [37] for the identification of the nearest neigh-
bors, ZOO [22] for the identification of cambium rings, 
Stats for k-means clustering (part of R), and Agricolae 
[38] for HSD-test.

The automated digital image processing methods were 
developed in this study and are described in the Results 
section.

To calculate the similarity, we proceeded in the same 
way as described in [39], calculating the pairwise Earth 
Mover’s Distance score and then a hierarchical clustering 
of the distances. With all these values, a dendrogram was 
designed to facilitate the visualization. As input values 
were used several values obtained at the end of the image 
analysis process. The parameters will be shown in more 
detail in the results section.

Manual cell counting for technical validation
To determine if the workflow is effective and compara-
ble, manual cell counts were performed on a reference set 
of 10 original, non-stitched images (one per genotype), 
which were taken as ground truth. No pre-processing 
was done on the images. Using the software QGIS (ver-
sion 3.20.1), each visually identified cell was labeled, and 
the total number of cells was determined. The same ten 
images were analyzed with automated image processing.

Measurement of puncture resistance of the beet root
The puncture resistance test was performed according 
to Kleuker and Hofmann [7] on five representative roots 
per replication with three measurements on each root 
using a texture analyzer (TA.XTplus100, Stable Micro 
Systems, Godalming, UK) with a puncture probe (diam-
eter 2 mm) and a crosshead speed of 60 mm min−1. The 
means per root were summarized to a mean per replica-
tion. The Forcemean is the average force measured in the 
5 mm underlying the periderm and describes the tissue 
firmness.
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