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Abstract 

Background  Leaf surface phenotypes can indicate plant health and relate to a plant’s adaptations to environmental 
stresses. Identifying these phenotypes using non-invasive techniques can assist in high-throughput phenotyping and 
can improve decision making in plant breeding. Identification of these surface phenotypes can also assist in stress 
identification. Incorporating surface phenotypes into leaf optical modelling can lead to improved biochemical param-
eter retrieval and species identification.

Results  In this paper, leaf surface phenotypes are characterized for 349 leaf samples based on polarized light reflec-
tance measured at Brewster’s Angle, and microscopic observation. Four main leaf surface phenotypes (glossy wax, 
glaucous wax, high trichome density, and glabrous) were identified for the leaf samples. The microscopic and visual 
observations of the phenotypes were used as ground truth for comparison with the spectral classification. In addition 
to surface classification, the microscope images were used to assess cell size, shape, and cell cap aspect ratios; these 
surface attributes were not found to correlate significantly with spectral measurements obtained in this study. Using 
a quadratic discriminant analysis function, a series of 10,000 classifications were run with the data randomly split 
between training and testing datasets, with 150 and 199 samples, respectively. The average correct classification rate 
was 72.9% with a worst-case classification of 60.3%.

Conclusions  Leaf surface phenotypes were successfully correlated with spectral measurements that can be obtained 
remotely. Remote identification of these surface phenotypes will improve leaf optical modelling and biochemical 
parameter estimations. Phenotyping of leaf surfaces can inform plant breeding decisions and assist with plant health 
monitoring.
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Background
Using spectral measurements to estimate leaf biochemi-
cal properties has been a developing field for a number of 
decades with early work relating leaf structure and reflec-
tance [1, 2]. Advances in this field have led to models and 

indices that can estimate the biochemical properties of 
leaves using reflectance and transmittance spectra [3–7]. 
Beyond the biochemical properties of leaves, reflectance 
and transmittance spectra are affected by illumination 
angle and leaf surface properties. The effects of illumina-
tion angle have been studied and modeled by combining 
the PROSPECT model with other features (BRDF [8] or 
the COSINE model [9]) but the effects of the leaf surface 
have not been investigated extensively in the context of 
modelling using spectral measurements.

Leaf surface characteristics are an important factor 
when considering light reflectance and transmittance 
as they can affect the absorbance of the sample and the 
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scattering of light at the leaf surface [10]. This latter fea-
ture is particularly important when considering illumina-
tion at angles other than nadir [11]. Specular reflection 
occurs at the leaf-cuticle interface when light is specu-
larly reflected before it encounters any biochemical 
constituents within the leaf [8, 11]. This specular light is 
partially polarized based on the surface roughness, angle 
of illumination, and index of refraction of the leaf surface 
[8, 11]. Conversely, diffuse light is reflected after being 
scattered within the interior of the leaf and is unpolarized 
[8, 11, 12].

Studies have been conducted to investigate the effects 
of leaf surface characteristics on light polarization [12–
14] with an important finding that the optical character-
istics of a leaf surface have effects on both the measured 
specular and diffuse components of reflectance [14]. This 
may be due to the non-uniformity of specular reflectance 
over multiple wavelengths as the index of refraction of 
the leaf cuticle tends to increase towards shorter wave-
lengths [5, 9]. Changes in the specular reflectance neces-
sarily cause changes in the diffuse component at a given 
wavelength. Other findings have indicated that that the 
specular reflectance is independent of pigment content 
in the leaves at Brewster’s angle [11, 15]. However, the 
scope of these previous studies was limited to individual 
wavelength comparisons or a series of 5 wavelengths in 
the visible region and the uneven nature of leaf surfaces 
is not well suited to exact discrimination between the dif-
fuse and specular components.

Research to evaluate and model polarization from 
plant canopies has assessed illumination angle [16] and 
canopy-level phenological traits such as flowering or a 
general glossy appearance of the leaves [17–19]. These 
studies investigated the polarization factor through a 
wider wavelength range and were conducted to better 
understand the scattering of vegetation covers but did 
not relate the polarization directly to the surface features 
at the cellular level.

Researchers have expressed interest in combining leaf 
surface characteristic modelling with biochemical mod-
elling but a shortage of leaf surface characteristic data 
that are correlated with specific spectral data has pre-
vented the furthering of this research [20]. Although 
polarization reflectance data exist for a variety of species 
at various angles [8, 15, 16], measured data in regards to 
the physical structure and characteristics (waxiness or 
trichome density) of the corresponding leaf surface is 
missing. Cell size and surface undulation, trichomes, and 
epicuticular wax can affect the polarization of a leaf sur-
face. Studies on the structure and function of these three 
features and how they relate to plant robustness, environ-
mental interaction, and pesticide wetting are extensive; 
however, the effect of these structures on light and leaf 

optical properties has not been presented in the range or 
with the resolution required for integration with current 
leaf models.

Additional work by Boize describing the structure 
of surface features has further categorized leaf sur-
face roughness into three subsections [21]. The macro-
scopic roughness considers features such as trichomes 
and protruding veins (~ 200–1000 µm), the microscopic 
roughness considers the cell size and arrangement 
(~ 10–200  µm), and the ultra-microscopic roughness 
considers the size and shape of the epicuticular wax sys-
tem (~ 1–10 µm) [21]. The macroscopic and microscopic 
roughness features are much larger than the wavelengths 
in the UV-Visible-NIR region of the spectrum and will 
affect the direction of light reflection based on variable 
local angle of incidence as the surface may not be opti-
cally smooth. The ultra-microscopic features approach 
the NIR wavelengths which may result in unique light 
interactions in different regions of the spectrum. 
Although the epicuticular waxes are classified as ultra-
microscopic, their effects are still noticeable at the micro-
scopic level as the waxes have the potential to form large 
structures on a scale similar to the inter-cellular grooves 
[21, 22].

The size and undulation of epidermal cells deter-
mine the local surface orientation; this is related to the 
surface roughness of the leaf and results in changes in 
local angle of incidence affecting the specular light that 
is reflected at the leaf surface. Epidermal cells can have 
diverse shapes and sizes with a range of length-to-width 
ratios [21] and margins with varying degrees of undula-
tion [23]. The height of the epidermal cells in relation to 
their width and length and the undulation of the margin 
will also affect the local surface orientation. These fea-
tures have not been extensively considered when study-
ing polarization as related to leaf surface phenotypes but 
a link between large features that approximate a plane 
surface (possibly large, flat epidermal cells) have been 
noted as producing more specular light [14]. Previous 
studies have generalized that older leaves appear to have 
a rougher cellular surface than young leaves [24] and 
would therefore produce a more diffuse reflectance. This 
study focused primarily on the microscopic roughness 
scale (~ 10–200 µm).

Trichome size, shape, and density can play a major 
role in the direction of light scattering [8, 14, 25]. Tri-
chome shape can be diverse ranging from short and 
pointed to long rounded and hooked at the end with 
a single or multiple branches [26]. At the most basic 
classification, trichomes are often described as either 
glandular or non-glandular. A glandular trichome is 
one which is capable of accumulating chemicals such 
as phytotoxic oils that can potentially be useful in 
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deterring herbivores, guiding pollinators, or affecting 
photosynthesis [27]. The density of hairs on leaves is 
variable across the leaf surface with densities often 
increasing on the veins [21].

Epicuticular waxes can produce absorption features 
unique from the biochemical constituents beyond 
the leaf cuticle [10]. These waxes can also produce 
structural features that affect light polarization simi-
larly to the cell size and trichomes. The epicuticular 
wax generally lies at the air-leaf interface at the top 
of the cuticle and has been hypothesized to minimize 
mechanical damage, inhibit insect attack, and pro-
tect from excess UV radiation [28]. The epicuticular 
wax can also improve drought tolerance by inhibiting 
cuticular transpiration [28]. The small structural fea-
tures of the waxes have the potential to scatter shorter 
wavelengths more effectively than longer wavelengths 
[15], a phenomenon that is not seen with the cellu-
lar roughness or trichome features. These waxes can 
be very diverse both at the visual level and structural 
level. Some waxes appear glossy and shiny while others 
appear glaucous and produce a waxy bloom [22, 29]. 
At the ultra-microscopic level, the structures of these 
waxes have been studied extensively and classified by 
observing over 13000 species. Barthlott et al. classified 
23 types of waxes that include smooth layers, platelets, 
and rodlets that can be correlated back to some of the 
visual representations of these waxes at the leaf-level 
[22].

The work described in this paper attempts to link 
leaf surface properties (surface roughness, trichomes, 
and epicuticular waxes) to spectral measurements for 
the purpose of integrating these features into future 
modelling. Quantitative comparisons between meas-
ured roughness parameters and qualitative classifica-
tion of generalized surface phenotypes (e.g. waxy or 
not waxy) are investigated. Polarized light reflectance 
is used to investigate the effects of leaf surface phe-
notypes in this preliminary study towards their incor-
poration into spectral modelling. For the purposes of 
this study, the observations of the physical character-
istics were limited to the macroscopic and microscope 
roughness as evaluated by an optical microscope and 
visual examination. The glaucous or glossy wax presen-
tation was noted but electron microscope images were 
not examined. Using optical microscopic assessment, 
the roughness of the surface cells, trichomes shape and 
density, and macroscopic structure of the waxes were 
analyzed and compared to spectral measurements of 
leaf surfaces. These results were used to create a clas-
sification protocol for predicting leaf surface pheno-
types from polarized spectral measurements.

Methods
Leaf samples were selected from indoor and outdoor 
sources, with the objective of developing a dataset rep-
resenting a wide range of trichome density, wax expres-
sion, cellular roughness, and pigmentation. Leaves 
were excised from the plants in a greenhouse or out-
doors and stored in plastic bags in a dark cooler full of 
ice [30]. Air was blown into the plastic bags by mouth 
to increase the humidity (as described in the spectro-
nomics protocol referenced in [30]) and prevent the 
adaxial surface of the leaf from contacting the plastic 
bag. These leaves were analyzed with a microscope and 
their spectral measurements were obtained within four 
hours of removal from their plants. All measurements 
for a single sample were collected within 30 min from 
start to finish (with replacement in the dark cooler 
between measurements if necessary) to reduce changes 
in the leaf surface structure during assessment. To 
ensure the same location on each leaf was analyzed 
microscopically and spectrally, the leaves were placed 
in a sample holder that centered the area of interest to 
be examined for each measurement as shown in Fig. 1 
[31]. In total, 349 leaves and associated measurements 
were included in the dataset, representing 59 different 
species. These are summarized in Table 1. A large por-
tion of these leaves are from the LOTUS dataset [32].

Fig. 1  Leaf holder used to ensure the same part of the leaf is 
assessed in every stage of the data collection
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Microscope analysis and surface reconstruction
A polarizing metallurgical microscope (ME580TA-PZ-
2L-18M3, AmScope) was used to assess the leaf sur-
faces. Due to the rough surface of the leaf samples, a 
single microscope image did not produce an in-focus 
image of the entire window. To obtain both depth 
information and fully focused images, a focus stack-
ing technique was employed. Depending on the topog-
raphy of the leaf surface, between 10 and 50 images 
were collected for each sample at different microscope 
stage heights. These series of images were obtained at 
100 × and 500 × magnification to highlight the mac-
roscopic and microscopic surface roughness features 
respectively. Images were taken at stage heights every 

0.005 mm for 100 × magnification and every 0.001 mm 
for 500 × magnification.

Post processing of these images involved stitching the 
series of images together using a focus stacking technique 
that assessed the gradient of each pixel in all images and 
determined the highest-gradient image to be “in focus” 
for each pixel. A symmetric 10 × 10 median filter was 
applied to the 1842 × 2456 image to remove noise and 
then a 15 × 15 Gaussian filter was applied to reduce small 
local variations and better capture the shape of a single 
cell. This generated a single, in-focus, composite image. 
Each pixel was then mapped back to three-dimensional 
space based on the in-focus height that was determined 
during stitching. By draping the stitched image of the leaf 

Table 1  Sample species and number used in this study

§ conserved name, not Jacq. (syn of Cornutia in Lamiaceae) nor Vell. Ex Pfeiff (Primulaceae)
† Parthenocissus quinquefolia (L.) Planch
‡ Rubus idaeus L. 1753 not Blanco 1837 nor Vell. 1829 nor Pursh 1814 nor Thunb. 1784

Species # of samples Species # of samples

Abelmoschus esculentus (L.) Moench 3 Ligularia sibirica (L.) Cass 1

Acer negundo L 4 Malus sp. Mill 5

Amelanchier alnifolia (Nutt.) Nutt 5 Nicotiana tabacum L 4

Anthurium Schott 1 Ocimum basilicum L 2

Begonia sp. L 2 Parthenocissus quinquefolia (L.)† 4

Beta vulgaris L 2 Penstemon barbatus (Cav.) Roth 1

Betula L 2 Petunia sp. Juss 1

Brassica napus L 83 Phaseolus vulgaris L 45

Brassica oleracea L 2 Populus tremuloides Michs 1

Capsicum annuum L 11 Prunus sp. L 13

Capsicum baccatum L 1 Quercus sp. L 10

Catharanthus sp. (L.) G.Don 1 Rubus idaeus L.‡ 3

Celosia sp. L 1 Rumex acetosa L 1

Citrus limon (L.) Osbeck Modernism 2 Salvia sp. L 2

Coleus scutellarioides (L.) Benth 1 Sambucus racemosa L 1

Coriandrum sativum L 2 Solanum lycopersicum L 9

Cornus sp. L 5 Solanum tuberosum L 6

Crassula ovata (Miller) Druce (1917) 10 Spiraea sp. L 1

Dianthus barbatus L 1 Stachys byzantine K.Koch 1

Eucalyptus regnans F.Muell 1 Streptocarpus sect. Saintpaulia H.Wendl 2

Fragaria x ananassa Duchesne 5 Symphoricarpos sp. Duhamel 1755 1

Fraxinus pennsylvanica Marshall 5 Taraxacum sp. F. H. Wigg 3

Geranium sp. L 2 Tradescantia sp. L 8

Glycine max (L.) Merr 6 Tropaeolum sp. L 2

Helianthus annuus L 4 Typha sp. L 2

Helianthus tuberosus L 6 Ulmus americana L 4

Hosta sp. Tratt.§ 2 Verbena sp. L 1

Hypoestes phyllostachya Baker, 1887 2 Vitis vinifera L 3

Lactuca sativa L 5 Zea mays L 7

Lathyrus odoratus L 3 Unknown 26
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onto the three-dimensional plot, the leaf surface rough-
ness was reconstructed. This allowed for quantitative 
assessment of cellular roughness and trichome height, 
shape, and density and provided visualization of all fea-
tures. The program for stitching and 3D reconstruction 
of these images was developed specifically for this project 
using Matlab [33].

Quantifying the cellular roughness in a single numeri-
cal parameter is difficult as variations in cellular size, 
shape, and aspect ratio can all affect the apparent rough-
ness of the surface. To capture this characteristic, a num-
ber of metrics were assessed. The cellular size, the degree 
of undulation of the cellular margin (margin undula-
tion), and cell cap aspect ratio were evaluated using 
the composite image and the 3D reconstructions of the 
500 × magnification images. To determine the cell size, 
margin undulation, and cell cap aspect ratio, a single cell 
was manually traced on the composite 500 × magnifica-
tion image (as shown in Fig. 2). Cell size was determined 
based on the number of pixels within the traced area of 
a single cell and converted to square micrometers based 
on measurements of a microscope calibration slide. The 
margin undulation was determined as the ratio between 
the cell area and the area of a computed convex hull 
around the traced cell as show in Eq. 1 using the areas A1 
and A2 traced in Fig. 2. The margin undulation will be a 
value between 0 and 1 where 1 represents a completely 
round cell.

The cell cap aspect ratio was calculated using the values 
on the 3D reconstruction that were within the traced cell 

(1)Margin Undulation =

A1

A2

area. Cell cap aspect ratio divides the width of a cell by 
the height of the cell. The difference between the maxi-
mum and minimum heights from within the cell area 
were taken as the cell height (in micrometers) and the 
cell width was determined based on the coordinate loca-
tions of those maximum and minimum heights. The cell 
width was calculated as twice the Pythagorean distance 
between the two points (in micrometers) and the cell cap 
aspect ratio was recorded as the ratio of width to height. 
Figure  3 shows example values for the cell cap aspect 
ratio calculations and Eq.  2 describes how these values 
are used.

where xpeak, ypeak, and zpeak correspond to the highest 
point, xvalley, yvalley, and zvalley correspond to the low-
est point, and c is a scaling factor equal to 9.8× 10

−5 
mm/pixel . This scaling factor is used to convert pixel 
number to millimeters using the calibration slide. For the 
example shown in Fig. 3, the cell cap aspect ratio is 12.1.

Five measurements (cell tracings) were recorded for 
each sample and an average value of the five repetitions 
was used for investigating correlations with spectral 
measurements. For 12 of the 349 samples, it was dif-
ficult to obtain cellular measurements due to very high 
amounts of wax deposits or trichomes covering the epi-
dermal cells. These samples were not used when deter-
mining correlations between cellular surface roughness 
and spectral measurements but were used in surface phe-
notype identification.

Spectral analysis
Light that is reflected from an optically smooth surface 
is partially polarized perpendicular to the plane of inci-
dence based on the illumination angle and refractive 
index. For samples that are not optically smooth (e.g. 
leaves), the degree of polarization is also dependent on 
the surface characteristics of the sample. Light is either 
reflected at the air-leaf interface or transmitted to the 
interior of the leaf where subsequent absorption, reflec-
tion, or transmittance occurs. Light that does not scatter 
specularly from the surface is scattered diffusely within 
the leaf (as reflectance or transmittance) and is depolar-
ized. Spectral measurements were obtained between 400 
and 1700 nm using the GoSPo goniospectropolarimeter 
[31] with illumination and sensor at Brewster’s Angle 
(approximately 55° from nadir using a refractive index 
of 1.45). A wire grid polarizing filter was placed between 
the sample and sensor (Edmund Optics, Barrington, NJ, 
USA). Reflectance factor spectra were collected with this 
polarizer in different orientations between 0° (parallel 

(2)

Cell CapAspect Ratio =
2c

√

(

xpeak − xvalley
)2

+
(

ypeak − yvalley
)2

(

zpeak − zvalley
)

Fig. 2  Microscope image of a black bean (Phaseolus vulgaris L.) leaf at 
500 × magnification showing the user traced cell (A1) and computed 
convex hull (A2) used in cell size and margin undulation calculations
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polarization to the incident plane) and 90° (perpendicu-
lar polarization to the incident plane) in 5° increments. 
These measurements were corrected to the total light 
as measured directly through the polarizing filter. The 
polarized bidirectional reflectance factor was estimated 
using Eq. 3 [14].

where RQ is the polarized bidirectional reflectance factor, 
Rmax is the bidirectional reflectance factor in the perpen-
dicular polarizer orientation, and Rmin is the bidirectional 
reflectance factor in the parallel polarizer orientation. 
Rmin should also be equal to the diffuse reflectance and 
RQ is equal to the specular reflectance. The sum of Rmin 
and RQ should equal the total bidirectional reflectance 
factor. R [14].

When collecting these polarized reflectance data, 
there was a thin film on the polarizer that caused 
spectral interference. Undulations in the specularly 

(3)RQ =
Rmax − Rmin

2.0

(4)R =
Rmax + Rmin

2.0
= RQ + Rmin

reflected light that were due to this interference were 
mitigated by using the average reflectance factor values 
between 500 and 900 nm for the analysis. The averaging 
allowed for the increases and decreases in the specu-
lar light due to the interference to cancel out over the 
range of interest.

For each leaf, nineteen reflectance factor scans were 
taken between 400 and 1700 nm at 5° increments of the 
polarizer’s orientation. Many scans were necessary to 
capture the maximum and minimum spectra as the sur-
face of the leaf is not always perfectly flat and aligned at 
55° illumination. For each scan, a dark reference spec-
trum was removed and the scan was normalized to the 
total transmittance through the polarizing filter (taken 
with source and sensor aligned). Two parameters were 
then calculated from each series of scans using the maxi-
mum and minimum spectra. The average RQ value (RQav) 
was determined as the average of values between 500 and 
900 nm and the diffuse ratio (DIFFR) was determined as 
the reflectance factor ratio between 765 and 680  nm in 
the diffuse spectrum (minimum spectrum or Rmin). The 
RQav range was chosen to maximize the number of data 
points in the least noisy portions of the spectra, and the 
DIFFR wavelengths were chose to span the red edge of 

Fig. 3  3D reconstruction of a black bean (Phaseolus vulgaris L.) leaf showing possible points used for cell cap aspect ratio calculations. X and Y axis 
values are pixels (1 pixel = 0.098 µm) and Z axis values are in millimeters
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the reflectance curve (where the leaf pigments no longer 
play a large role in the reflectance).

Results and discussion
In this section, the processing of spectral measurements 
and the observations of the effects of three leaf surface 
phenotypes will be discussed. The three surface pheno-
types include the cellular roughness on the surface of the 
leaf, the presence and types of waxes on the surface of 
the leaf, and the trichome shape, size, and density on the 
surface of the leaf. Following the analysis of the effects 
of each phenotype on light interaction with the leaf, a 
method for classifying the leaf surface phenotype using 
polarized spectral data will be presented.

Specular measurements
A selection of scans obtained from six leaf sample are 
shown in Fig. 4. The diffuse reflectance is the minimum 
reflectance factor spectra and RQav is calculated using the 
difference between the maximum and minimum spec-
tra. Theoretically, the minimum reflectance should be 
obtained with the polarizer parallel to the plane of inci-
dence. Due to the potential for leaf surface angle varia-
tion, Rmin and Rmax were determined based on the lowest 

and highest measured reflectance respectively, instead of 
the reflectance measured at the defined parallel and per-
pendicular polarizer orientations. This is seen in Fig.  4 
where the spectra at 90◦ is not always the minimum.

In Fig. 4, there is a shape difference between the maxi-
mum and minimum reflectance factor spectra that 
results from the differences in specularly and diffusely 
reflected light. The maximum reflectance contains both 
specularly and diffusely reflected light, but the minimum 
reflectance only contains diffusely reflected light. The 
portion that is specular light appears more white than 
green as this light does not enter the leaf and interact 
with biochemical components. The specular reflectance 
in the visible region of the spectra causes the maximum 
reflectance factor spectra to appear flatter than in the 
diffuse reflectance and these spectra are partially polar-
ized. The diffuse reflectance represents light that enters 
the leaf and is reemitted after encountering one or more 
interfaces inside the leaf. This light appears green as it 
has been partially absorbed by the biochemical constitu-
ents and is non-polarized. In these data, there is a thin 
film interference effect from the polarizer that causes 
undulations in the specularly reflected light. This effect 
is most noticeable in samples with high RQ values but is 

Fig. 4  Reflectance factor with different polarizer orientations between parallel and perpendicular for a Virginia creeper (Parthenocissus quinquefolia 
(L.) Planch.) b Black bean (Phaseolus vulgaris L.) c Okra (Abelmoschus esculentus (L.) Moench) d Begonia (Begonia sp. L.) e Lemon (Citrus limon (L.) 
Osbeck) f Soy (Glycine max (L.) Merr.). These leaves correspond with the images in Fig. 5
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mitigated by using the average value over 500–900  nm. 
In Fig. 4, this effect can be seen as waves in some of the 
spectra but the effect is generally less prominent at Rmin 
and Rmax . Removal of this effect has not been possible 
with correction with light measured through the polar-
izing filter as the degree of severity of the interference 
appears to change between samples.

Cellular roughness
Figure 5 shows a selection of images with leaf cells that 
range from small to large, low to high undulating edges, 
and low to high cell cap aspect ratios, depicted in no rela-
tive order. These samples correspond to the spectral data 
show in Fig. 4. The biophysical metrics for these samples 
are summarized in Table 2 as well as the metric obtained 
from spectral measurements. In this table, the mar-
gin undulation represents values up to 1 (which would 

represent a perfectly round cell). A larger value for cell 
cap aspect ratio represents a flatter surface.

To determine the effects of these measured cellular 
parameters on the spectral measurements, the cellular 
feature values were plotted against the RQav value for each 
leaf as shown in Fig. 6. In this set of figures, the cell size, 
margin undulation, and cell cap aspect ratio correlations 
are shown. Other parameters (e.g. cell length to width 
ratio, stomata count) were observed in some leaves, but 
the margin undulation and size were the only parameters 
to show some correlation with the measured RQav. The 
cell cap aspect ratio correlations are included as it is a 
parameter currently used in some leaf models [20].

In Fig.  6, two subsets of data and two trend lines are 
determined. The first subset of data was the glabrous 
leaves which did not have a significant number of tri-
chomes or quantity of wax observed in the microscope 

Fig. 5  A variety of cell shapes and sizes at 500 × magnification for a Virginia creeper (Parthenocissus quinquefolia (L.) Planch.) b Black bean 
(Phaseolus vulgaris L.) c Okra (Abelmoschus esculentus (L.) Moench) d Begonia (Begonia sp. L.) e Lemon (Citrus limon (L.) Osbeck) f Soy (Glycine max (L.) 
Merr.)

Table 2  Summary of cellular features and spectral measurements for six microscope images shown in Fig. 5

a. Virginia creeper b. Black bean c. Okra d. Begonia e. Lemon f. Soy

Cell size (μm2) 982 1773 1497 8448 260 568

Margin undulation 0.96 0.77 0.84 0.97 0.95 0.95

Cell cap aspect ratio 21.4 17.1 30.4 18.6 9.2 9.1

RQav (× 104) 4.85 3.72 2.32 6.77 3.03 1.63

DIFFR 6.83 13.17 4.77 9.67 11.80 5.17
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images. This subset is denoted by the grey dot marker 
and grey trend line. The second, larger subset includes all 
other leaves in the dataset for which microscopic obser-
vation was possible. This subset is denoted with black x 
markers and a black trend line. This separation of data 
was done to observe the effect of the cellular geometry 
separately as the polarization from waxes and hair struc-
tures are indistinguishable from the polarization caused 
by cellular structure. In Fig.  6a the correlation between 
cell size and RQav is low for the full dataset but a slight 
correlation can be observed for the sub-set of glabrous 
leaves. This correlation is very weak, but the trend agrees 
with the expected observation as larger cells result in a 
higher RQav. Larger epidermal cells have the potential to 
create a more optically smooth surface with fewer angu-
lar-variant grooves in a given area. Leaves with small epi-
dermal cells are more likely to produce an optically rough 
surface with large variation in local surface angle due to 
the constantly undulating cell-groove interface.

In Fig. 6b, no correlation is observed between cell mar-
gin undulation and RQav for non-glabrous leaves. How-
ever, in the glabrous sub-set, a weak correlation between 
RQav and the margin undulation can be observed. This 
correlation, however, indicates a decrease in RQav as the 
cells become more round (the edge is undulating less). 
This finding does not fit with the expectation that more 
undulations would create higher variability in the inci-
dent light angle and may relate to the relative heights of 
undulating and round cells.

The cell cap aspect ratio correlation is shown in Fig. 6c. 
In previously developed models, an increased epidermal 
cell cap aspect ratio causes a decrease in reflectance with 
nadir illumination and has a negligible effect on specular 
reflectance [20, 34]. In the data collected here, this cel-
lular feature shows no correlation between RQav and the 
cell cap aspect ratio for either the glabrous leaves or the 
full set of leaves. For all correlations shown in Fig. 6, the 
largest p-value is 1.37 × 10–32.

Surface waxes
As described in previous research [28] surface waxes 
can present with different thicknesses and morphologies 
that affect their appearance at the ultra-microscopic and 
visible levels. In this work, waxes are classified into two 
major categories—glossy and glaucous—with the former 
appearing shiny on the leaf and the latter having a blu-
ish hue like the bloom on a succulent. The differences 
between these two categories can be seen with the naked 
eye and in the microscope images and are also distin-
guishable using spectral measurements.Fig. 6  Comparison of leaf surface parameters to RQav value for a Cell 

Size b Margin Undulation c Cell Cap Aspect Ratio. Full dataset shown 
with black x, glabrous leaves shown with grey dot
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Glossy waxes
To the naked eye, glossy waxes produce a shiny surface on 
the leaf. When viewed at an angle, these leaves appear to 
reflect white light. Three examples of leaves with a glossy 
wax are shown in Fig. 7 with their respective microscope 
images. Under the microscope, the glossy wax is visible 
and often covers the epidermal cells completely so that 
their size and shape cannot be determined. This is the 
case in the anthurium leaf (Fig. 7a) where the wax layer 
is producing a smooth film across the entire surface. The 
wax itself has some texture or what appear to be bubbles 
within the wax, but this layer is very smooth compared 
to the roughness of the surface cells. The lemon leaf wax 
(Fig.  7b) appears to be filling in the space between the 
epidermal cells to create a smooth surface on portions of 
the leaf. The spiderwort plant (Fig. 7c) has very large cells 
which are still visible underneath the surface wax. This 
wax is covering the whole surface in a thin layer.

The shiny appearance of these leaves results from the 
more optically smooth surface that is produced when the 
waxes fill in the grooves between the epidermal cells. The 
smooth surface allows for consistent directional reflec-
tance of polarized light. Spectrally, this produces more 
variation between specular and diffuse reflectance, and 
therefore a higher RQ.

Glaucous waxes
Glaucous waxes produce a blueish hue on the leaf surface 
and can often be wiped away to produce a shiny film. This 
blueish hue is observed as increased spectral reflectance 
in the visible region. Leaves with this feature were han-
dled very carefully to avoid disturbing the surface. Three 
leaves with undisturbed surfaces are shown in Fig. 8. In 
the microscope images, the glaucous leaves can appear as 
though they are out of focus. The glaucous wax coats the 
entire surface of the leaf similar to the glossy anthurium, 
but instead of the textured, bubbled appearance of the 
glossy wax, the glaucous wax appears more mottled or 
speckled. Unlike glossy waxes, glaucous waxes form com-
plex structures and scatter light in a less uniform pattern. 
This results in lower degrees of polarization.

Trichomes
The shape, size, and density of trichomes affect the reflec-
tance of incident light by creating variable surface heights 
and angles resulting in non-uniform specular reflectance. 
In this section, trichomes are separated into glandular 
and non-glandular with the latter being much more prev-
alent in the leaves presented in this study.

Fig. 7  Images of leaves with a glossy, shiny wax a Anthurium (Anthurium sp. Schott) b Lemon (Citrus limon (L.) Osbeck) c Spiderwort (Tradescantia 
sp. L.). Microscope images at 500 × magnification are shown directly below each leaf sample
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Glandular trichomes
Glandular trichomes are hair like structures on the sur-
face of the leaf that secrete metabolites [27]. Of the leaves 
studied in this work, glandular trichomes were only iden-
tified on two tomato leaves. When comparing the spec-
tral measurements of the leaves with glandular trichomes 
to those with non-glandular trichomes, no distinguisha-
ble differences were found. The presence of the secretions 
on the tips of the trichomes does not appear to affect the 
surface polarization in a capacity that is different to the 
non-glandular trichomes.

Non‑glandular trichomes
Non-glandular trichomes were found on 39 of the leaves 
studied in this work (including two which displayed both 
glandular and non-glandular trichomes). To quantify the 
percentage of the surface that was covered with pubes-
cence, hairs on each leaf were manually traced. The per-
centage of the surface covered by the traced hairs was 
taken as the percent pubescent coverage. For leaves with 
high pubescent coverage (greater than 25%), and small 
but consistent sized trichomes, an approximation was 
determined by manually-counting the number of hairs 
and multiplying this value by the average size of 5 indi-
vidual hairs.

Within the non-glandular classification, trichomes 
of different sizes, shapes, and dispersion densities were 
found as shown in Fig.  9. When the trichome size and 

density are high, the RQav value is very low as the light is 
scattered more randomly on the trichomes. However, as 
seen in Fig. 10, the relationship between the pubescence 
covering the surface and RQav is not linear. The size and 
shape of the trichome can also affect the scattering of 
light. For medium density (less than 10% of the surface 
covered) of primarily short vertical trichomes less than 
20 μm in length (as in Fig. 9a) RQav is measured between 
0.5 × 10–4 and 4.5 × 10–4. The sunflower shown in Fig. 9a 
has an RQav of 1.92 × 10–4. The long, horizontal trichomes 
on the strawberry in Fig.  9b result in a lower RQav of 
1.18 × 10–4. Although both these leaves have pubescent 
surface coverage under 10% (4.5% for sunflower and 8.6% 
for strawberry) the horizontal trichomes may scatter the 
light more effectively, lowering the RQav. For leaves with 
extreme pubescence, the RQav value is very low (under 
2 × 10–4) and DIFFR decreases as well. For these high 
trichome density leaves, the trichomes are so numer-
ous that a nearly opaque layer of trichomes can be seen 
above the epidermal layer. The oak shown in Fig. 9c has 
trichomes covering 63.4% of the surface and an RQav of 
1.05 × 10–4. These highly pubescent leaves often appear 
blueish or whitish similar to the glaucous leaves and have 
a comparable DIFFR.

Leaf surface phenotype classification
The effects of leaf surface phenotypes have been dis-
cussed generally in relation to spectral measurements, 

Fig. 8  Images of leaves with a glaucous wax a Jade (Crassula ovata (Miller) Druce (1917)) b Broccoli (Brassica oleracea L.) c Canola (Brassica napus L.). 
Microscope images at 500 × magnification are shown directly below each leaf sample
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but the overlapping effects of surface roughness, waxes, 
and trichomes makes surface phenotype classification 
non-trivial. The effects of cellular surface roughness are 
most evident when there is little to no wax or hairs pre-
sent on the leaves. In general, the effects of hairs and 
waxes on RQav are more prominent than the cellular 
effects. This can be observed in Fig.  6 where the gla-
brous leaves have RQav values ranging from 0.48 × 10–4 
to 4.32 × 10–4 but the hairy and waxy leaves have RQav 

values ranging from 0.30 × 10–4 to 19.63 × 10–4. These 
stronger effects on RQav provide a more clear method 
for identifying these phenotypes.

To compare the effects of these larger-scale pheno-
types, four categories of classification were developed 
(with number of samples shown in parenthesis): glossy 
(waxy) (104), glaucous (110), hairy (39), and glabrous 

Fig. 9  Image of leaves with different types of non-glandular trichomes a Sunflower (Helianthus annuus L.) b Strawberry (Fragaria x ananassa 
Duchesne) c Oak (Quercus sp. L.). Microscope images at 100 × magnification are shown directly below each leaf sample

Fig. 10  The effect of pubescence on RQav value based on surface 
area percentage covered with trichomes

Fig. 11  Classification space of leaf surface phenotypes based on RQav 
and DIFFR for one of 10,000 runs (classification rate was 74.9% in this 
example)
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(defined here as leaves without significant trichomes or 
waxes) (96). Using RQav and DIFFR, a quadratic discrimi-
nation analysis with equal prior probabilities was per-
formed to classify the samples. For one example using 
150 training samples selected randomly (50 glossy, 48 
glaucous, 18 hairy, and 34 glabrous) and 199 testing sam-
ples (54 glossy, 62 glaucous, 21 hairy, and 62 glabrous), 
the leaf surface phenotypes were correctly identified for 
74.9% of samples. These results in the classification space 
are shown in Fig. 11 and resulted in correct identification 
for 78.1% of glossy, 72.7% of glaucous, 72.2% of hairy, and 
74.5% of glabrous samples. The portion of the classifica-
tion space for RQav values from 8 × 10–4 to 20 × 10–4 were 
not included as they only contained samples classified 
as glossy and crowded the visualization of the portion 
of the graph where phenotype classification spaces are 
presented.

To more accurately test the ability to classify the sur-
face phenotypes, the data were randomly split again into 
a new training (150 samples) and testing (199 samples) 
group and a new classification rate was determined. This 
process was repeated for 10,000 runs and the aggregate 
results were used for classification analysis. The average 
correct classification rate was 72.9% with the worst and 
best runs finding a correct classification rate of 60.3% and 
81.4%, respectively. The standard deviation for the aver-
age classification rate was 2.7%. The results of all 10,000 
runs are summarized in Fig. 12 showing the distribution 
of classification rates.

The average correct classification rates (with stand-
ard deviations) for each surface phenotype were 77.2% 
± 5.2% for glossy (12a), 69.5% ± 6.1% for glaucous (12b), 
75.8% ± 8.9% for hairy (12c), and 70.8% ± 5.7% for gla-
brous (12d). The distributions for the classifications rates 
for each surface phenotype are shown in Fig.  13. These 
results indicate that differentiating between surface phe-
notypes is possible using spectral measurements com-
bined with a polarizing filter.

In this study, a variety of leaf colors and ages were 
investigated including light green to dark red leaf sam-
ples. However, it was noted that for samples with very 
low chlorophyll content (pink, yellow, or white leaves), 
the diffuse ratio wavelengths would need to be adjusted. 
Identifying these leaves is trivial using spectral meas-
urements and such leaves have been successfully classi-
fied using a lower visible wavelength band (results not 
shown).

Although quantifying the wax loading or trichome 
characteristics were not considered in this study, future 
work should consider the potential quantitative applica-
tion of these methods. The results from this study have 
produced a classification system that can use polarized 
light reflected at Brewster’s Angle to determine leaf sur-
face phenotypes at the macro and microscopic levels. 
Further research will also investigate the effects of illu-
mination at angles other than Brewster’s to improve the 
robustness of this classification for use with more gen-
eralized measurements. These classifications will help in 
remote sensing and precision agriculture by improving 
the specificity of leaf modelling methods.

Conclusions
Three hundred forty nine leaf samples were analyzed 
microscopically and spectrally to determine the feasi-
bility of characterizing the leaf surface phenotype using 
spectral measurements. Microscope images were used 
to determine the cell size, the degree of undulation of 
the cell edge, and the cell cap aspect ratio. The pres-
ence of hairs and waxes were also analyzed under the 
microscope. These data along with visual examination 
of the leaves were used to classify leaves into four cat-
egories: glossy wax, glaucous wax, high trichome den-
sity, and glabrous (low wax or trichome loading). Using 
these four categories and by splitting the data into 
training and testing sets, a discriminant analysis with 
a quadratic function was repeated for 10,000 iterations 
resulting in an average classification rate of 72.9% and a 
standard deviation of 2.7%. The effects of microscopic 
surface features such as cell size and cell cap aspect 

Fig. 12  Classification distribution results for 10,000 runs with random 
data splitting
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ratio were not found to have a significant correlation 
with the spectral measurements obtained in this study. 
These measurements may still be useful in leaf opti-
cally modeling through their incorporation into exist-
ing models. Future work will investigate the potential 
for quantitatively assessing wax and trichome loading 
as well as the effects of angular variation.
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