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Abstract 

Background  Plant shape and structure are important factors in peanut breeding research. Constructing a three-
dimension (3D) model can provide an effective digital tool for comprehensive and quantitative analysis of peanut 
plant structure. Fast and accurate are always the goals of the plant 3D model reconstruction research.

Results  We proposed a 3D reconstruction method based on dual RGB-D cameras for the peanut plant 3D model 
quickly and accurately. The two Kinect v2 were mirror symmetry placed on both sides of the peanut plant, and the 
point cloud data obtained were filtered twice to remove noise interference. After rotation and translation based on 
the corresponding geometric relationship, the point cloud acquired by the two Kinect v2 was converted to the same 
coordinate system and spliced into the 3D structure of the peanut plant. The experiment was conducted at various 
growth stages based on twenty potted peanuts. The plant traits’ height, width, length, and volume were calculated 
through the reconstructed 3D models, and manual measurement was also carried out during the experiment pro-
cessing. The accuracy of the 3D model was evaluated through a synthetic coefficient, which was generated by calcu-
lating the average accuracy of the four traits. The test result showed that the average accuracy of the reconstructed 
peanut plant 3D model by this method is 93.42%. A comparative experiment with the iterative closest point (ICP) 
algorithm, a widely used 3D modeling algorithm, was additionally implemented to test the rapidity of this method. 
The test result shows that the proposed method is 2.54 times faster with approximated accuracy compared to the ICP 
method.

Conclusions  The reconstruction method for the 3D model of the peanut plant described in this paper is capable of 
rapidly and accurately establishing a 3D model of the peanut plant while also meeting the modeling requirements 
for other species’ breeding processes. This study offers a potential tool to further explore the 3D model for improving 
traits and agronomic qualities of plants.
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Background
Peanuts are a widely cultivated oil and cash crop, pro-
viding a significant source of oil and protein [1]. The 
global total peanut production was 50.606 million tons, 
and China was the largest producer with 18.20 million 
tons in 2021 [2]. It is important to improve the yield 
and quality of peanuts for China’s and the world’s oil 
supply [3, 4]. An effective way to increase peanuts pro-
duction is by developing new varieties with excellent 
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traits using advanced gene technology [5–7]. The 
results of interaction between genotypes and environ-
mental factors are expressed through the phenotypic 
parameters of plant structure [8, 9]. Plant architectural 
traits are important phenotypic traits for selecting new 
adaptative cultivars in crop breeding studies [10].

Plant structure reflects the size and organization 
form of above-ground organs of crops [11], which can 
indicate growth status, cultivation conditions, and 
water and fertilizer measures of crops [12]. In addi-
tion, the phenotypic traits of plants such as height and 
width also provide references for breeders to cultivate 
excellent breeding [13–16]. The establishment of a 
three-dimensional (3D) model of the plant can compre-
hensively understand the morphological features of the 
plant, which avoid the limitation of two-dimensional 
(2D) imaging lacking depth information and facilitate 
the subsequent accurate extraction of multiple trait 
parameters [10, 17–19]. Therefore, the 3D reconstruc-
tion model of plants has gradually become an essential 
part of phenotypic research.

In the last decade, a lot of research has been done 
on the 3D modeling of plant structures using differ-
ent kinds of technologies including stereo vision (SV), 
Structure from Motion (SfM), LiDAR, and RGB-D 
camera. Both SV and SfM 3D modeling methods are 
based on 2D imaging devices, which reconstruct the 
3D architecture of the target by 2D images from dif-
ferent perspectives. SV uses two or more cameras to 
collect the images of the target at the same time, while 
SfM captures overlapping images by moving the cam-
era around an object [20–22]. Bao et  al. [23] used a 
stereovision-equipped robot to reconstruct a 3D model 
of sorghum and successfully acquired phenotypic data 
from high-throughput crops in the field. Malambo et al. 
[24] proposed a 3D modeling method for SfM based 
on an unmanned aerial vehicle system and estimated 
maize and sorghum height data from point clouds gen-
erated using SfM. SV and SfM can be used both indoors 
and field, and in SfM the camera can be mounted on 
the unmanned aerial vehicle (UAV) platform to quickly 
obtain information on a large area of the field in a short 
time [25]. However, SV and SfM are sensitive to light 
intensity, and the change in light environment will 
increase the deviation of the image. Although the image 
quality requirement can be reduced in the SfM method, 
there is a lot of data redundancy in multiple images 
and the reconstruction speed is slow [26]. It should 
be concerned and considered that improve the speed 
of the 3D modeling. In addition, some researchers try 
to restore depth information through deep learning 
algorithms based on RGB images [27–29]. However, 
this technology requires high-quality RGB images and 

powerful computers to implement and has not been 
widely used in plant 3D modeling.

It is a widely used technique for reconstructing a 3D 
canopy using scanning equipment to generate a 3D point 
cloud of plants, which generally employs the time of 
flight (ToF) or phase-shifting scanning principle to gen-
erate the point cloud [30]. Shi et al. [31] used LiDAR to 
create 3D models of corn plants and enable real-time 
monitoring of crops’ 3D information. Moreno et al. [32] 
reconstructed vineyard crops through 3D points cloud 
generated by LiDAR installed onboard a mobile plat-
form. Leaf Color is a key phenotype trait of crops, and 
the 3D model with color information can provide more 
phenotype information for simulating dynamic crop 
growth and development in space and time [33]. As an 
active 3D imaging instrument, the LiDAR is more costly 
than the 2D camera [34]. Moreover, the reconstruction 
effect is affected by the edge effect, the diffuse reflection 
occurs when the excited wave is projected to the branch 
or leaf ’s edge, then the lidar may miss the reflected wave, 
impairing edge recognition [35, 36]. The RGB-D cam-
era can acquire both color and depth information about 
the target simultaneously. Its advantages include ease of 
development, high real-time performance, and strong 
anti-interference properties [37, 38]. Thus, since Micro-
soft released the Kinect in 2010, an increasing number of 
researchers have applied it to plant 3D modeling [39–42].

The 3D modeling methods have been applied in the 
field environment, and the plant phenotypic traits of 
crop populations are obtained through the 3D recon-
struction model of crops [43]. Although the field experi-
ment can reflect the performance of crops in the actual 
growth environment, it is easy to be affected by many 
uncontrollable factors, such as weather, light intensity, 
and wind [26, 44]. Moreover, breeding programs require 
the evaluation of architectural traits at a finer scale, such 
as organ scale [10, 45, 46]. However, it is not a feasible 
measurement of those traits under the field conditions, 
so the researchers tend to conduct the initial screening of 
breeds in a controlled environment because the changes 
in the process of crop growth can be found more intui-
tively [17, 47, 48]. As an RGB-D camera, Kinect v2 shows 
great potential with low cost and strong robustness in 3D 
modeling indoors [21, 49], and it has been applied to 3D 
fine modeling of plants [30, 50–52].

Fusing point clouds obtained from multiple angles 
is a common method to establish accurate 3D models, 
and researchers tend to reconstruct plant modeling 
through three or more angle point clouds data [42, 
49]. The premise of point cloud fusion is to realize the 
registration of multiple point clouds, which accurately 
align the point cloud data from different views into the 
complete 3D model of the plant [17]. The registration 
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algorithm can find the relationship between different 
views by searching the correspondence of key points 
between multiple views. The accuracy of 3D modeling 
is determined by the registration algorithm, as a clas-
sical 3D point cloud registration algorithm, the itera-
tive closest point (ICP) algorithm has been widely used 
in plant modeling [38, 53]. It is difficult to establish 
an accurate plant 3D model based on the information 
collected from one view, so it is necessary to scan the 
target from multiple views to obtain point clouds in 
different directions and integrate them effectively [54]. 
Point clouds from more perspectives will improve the 
accuracy of modeling, but the more point clouds for 
registration, the longer the time required to establish 
the model, and the modeling efficiency can decrease as 
the number of points increases [55]. The relationship 
between balancing speed and accuracy is a problem to 
be considered.

At present, many achievements have been made in 
the reconstruction of the 3D model such as Maize 
[31], Sorghum [23], and Soybean [56], but the 3D 
plant model of the peanut has not been thoroughly 
researched. This research aims to quickly establish an 
accurate 3D model of an individual peanut plant by 
point clouds obtained from only two views. This paper 
describes this 3D modeling method, which can quickly 
reconstruct the 3D model through the non-overlapping 
point clouds in two symmetrical directions and can 
ensure the accuracy of the 3D model. The main contri-
butions of this paper are on the following aspects: (1) 
proposing a method for automatic 3D plant reconstruc-
tion and phenotypic data acquisition for peanuts based 
on dual Kinect v2. (2) optimizing the parameters of the 
filtering algorithm, and evaluating the accuracy of the 
reconstructed 3D point cloud model to determine the 
method’s feasibility. (3) designing a comparison experi-
ment with the ICP algorithm to test the rapidity of the 
method proposed in this paper.

This paper is organized as follows: "Related works" sec-
tion explained the related works, which include the point 
cloud acquisition system of the peanut plant, parameter 
calibration of Kinect v2, and generation of the color 3D 
point cloud. "Methods" section describes the method for 
3D plant reconstruction and phenotypic data acquisition 
for the peanut plant. "Experiment and results" section 
reports the experiment setup and results to determine 
the effectiveness of the method proposed in this paper. 
"Disscussion" section discusses the factors affecting the 
accuracy of the 3D model reconstruction, the impor-
tance of parameter selection in statistical filtering, and 
the advantages of the method proposed in this paper in 
modeling speed. Finally, the conclusions and future work 
are given in "Conclusion" section.

Related works
In this section, the acquisition method of peanut plant 
point cloud is introduced, which include the acquisition 
system of point cloud, sensor calibration and the genera-
tion process of 3D point cloud.

Peanut plant point cloud acquisition system
To collect the peanut plant point cloud, a plant informa-
tion acquisition system based on Kinect v2 was devel-
oped (Fig.  1). The flowerpot, which measures 23  cm in 
diameter and 20 cm in height, was placed on an 80 cm-
high operating table when data collection was imple-
mented. Two Kinect v2, designated No.1 and No.2, were 
placed on opposite sides of the flowerpot with left and 
right mirror symmetry to reduce the effect caused by 
blade overlap. Normally, the height and width of peanut 
plants do not exceed 40  cm [13, 57]. The measurement 
range of Kinect v2 is from 50 to 400 cm, and the Kinect 
v2 depth camera has a vertical field of view of 60 degrees 
[58]. Two Kinect v2 were 70 cm away from the center of 
the flowerpot and the lens’s focal point was 100 cm above 
the ground, which can meet the measurement require-
ments and fill the viewing field with peanut plants to the 
greatest extent.

The resolution of color and depth images got by Kinect 
v2 is 1920×1080 and 512×424, respectively. The image 
information obtained by Kinect v2 is transferred to the 
computer. The CPU is Intel(R) Core (TM) I5-7300HQ 
CPU @ 2.50  GHz, the graphics card is NVIDIA 
GEFORCE GTX1050 Ti, and the operating system is 
Microsoft Windows 10. A 3D reconstruction model pro-
gram is developed based on C +  + , OpenCV3.4.1, and 
PCL (point cloud library) 1.8.1.

Kinect v2 parameter calibration
To obtain accurate color and depth information of a tar-
geted object, the RGB-D camera needs to be carefully 
calibrated to achieve pixel-to-pixel matching between its 
depth image and RGB image. The calibration is affected 
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Fig. 1  Schematic diagram of point cloud data acquisition system
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by the RGB-D camera’s intrinsic parameters, e.g. focal 
length, lens distortion, and the relative position and ori-
entation between RGB and depth sensors. These parame-
ters differ from camera to camera and should be provided 
by their manufacturer. However, some commercial 
RGB-D cameras do not come with detailed technical 
information [59] and the point clouds which form the 
depth images are often very noisy which makes numer-
ous challenges to use RGB-D cameras correctly and accu-
rately. To more accurately align RGB images and depth 
images and create color 3D point clouds, Kinect v2 was 
calibrated for intrinsic parameters.

The Kinect v2 is equipped with an RGB camera and a 
depth camera that does not overlap. To obtain the intrin-
sic parameter matrices IMrgb and IMir for the RGB and 
depth cameras, respectively, as well as the rotation matrix 
EMr and translation matrix EMt between the RGB and 
depth cameras, the Kinect v2 parameters must be cali-
brated to match color and depth images. RGB and depth 
images can be matched using these matrices. Figure  2 
illustrates the steps involved in calibrating the Kinect v2’s 
parameters [60].

Step 1: Kinect v2 was used to take color and infrared 
images of 20 checkerboard calibration plates at different 
positions, angles, and attitudes.

Step 2: The captured images were input into the Stereo 
Camera Calibration software package of MATLAB.

Step 3: The stereo camera calibration software package 
was used to determine the calibration error of the input 
image. The image with the largest calibration error will 
then be deleted in descending order until the average cal-
ibration error is less than 0.15.

Step 4: The intrinsic parameter matrices IMrgb and 
IMir , rotation matrices EMr , and translation matri-
ces EMt of RGB camera and depth camera were got, 
respectively.

Generation process of color 3D point cloud
The depth data obtained by Kinect v2 represents the 
distance between the target point and the plane where 
Kinect v2 was located. The 3D reconstruction of the tar-
get was based on the coordinate information of the target 
point, so the depth data should be converted into a 3D 
point cloud containing coordinate information, as shown 
in Eq. (1).

where pir represents the depth information of the pixel in 
the depth image got by Kinect v2, d represents the depth 
value, x∗ , y∗ distribution represents the row and column 
positions of the pixel in the depth image. Pir represents 
the transformed point cloud information.

(1)
{
pir = d × [x∗ y∗ 1]

Pir = Pir × IMir

Step1. Images of RGB and infrared were obtained 
at different positions and angles

Step2. Images of RGB and infrared were inputed into
 Stereo Camera Calibration toolkit of Matlab

Step3. The calibration error of the input images were 
calculated and the images number were adjusted

Step4. The parameters of intrisics, rotation matrices, 
and translation matrices of cameras were obtained

Fig. 2  Calibration of Kinect v2 camera parameters
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To get the color point cloud, the depth point cloud 
from the depth image needs to be converted to the RGB 
camera coordinate system. This transformation can be 
obtained based on the calibrated rotation EMr and trans-
lational matrix EMt by using Eq. (2).

where Prgb represents any point in the depth point cloud 
converted to the color camera coordinate system. Since 
the imaging range and resolution of the depth image and 
color image are different, it is necessary to find the corre-
sponding point of Prgb point in the color image to get its 
color information. The pixels CP matching Prgb positions 
in color images can be obtained by Eq. (3).

The CP consists of vectors 
(
x̂, ŷ, c

)
 , x̂ and ŷ are the com-

puted values of the row and column positions of the color 
image. The color information ‘c’ of the points closest to 
these two calculated values in the actual color image is 
considered the color value of the corresponding depth 
point cloud. Based on this method, color three-dimen-
sional point clouds can be obtained.

Methods
In the following section, the method of fast 3D model 
reconstruction was presented. Firstly, the point cloud 
data was filtered twice, and then two pieces of the point 
cloud from dual Kinect v2 were fusion and modeled 
based on the corresponding position relationship in 
space. The evaluation method used for the accuracy of 
the 3D reconstruction model has also been mentioned in 
this section.

Passthrough filtering and parameter determination
When the RGB-D camera acquires depth point cloud 
information, background noise is introduced, which 
can be removed using PassThrough filtering [61]. The 
PassThrough filtering can eliminate points that do not 
satisfy the constraint conditions, as illustrated in Eq. (4), 
then the region of interest (ROI) can be obtained.

where x , y , and z denote the coordinate system posi-
tion of the point cloud, (Xmin,Xmax) , (Ymin,Ymax) , and 
(Zmin,Zmax) denote the filtering range in the coordinate 
system’s three coordinate directions (Fig. 3). Their values 
can be calculated based on the size of the peanut plant, 
which were shown in Table1. All point clouds that do 
not satisfy this constraint condition were filtered out as 

(2)Prgb = Pir × EMr + EMt

(3)CP = Prgb × IMrgb

(4)






Xmin < x < Xmax

Ymin < y < Ymax

Zmin < z < Zmax

background noise, and the ROI was determined follow-
ing PassThrough filtering.

Statistical filtering and parameter optimization
After PassThrough filtering, only the approximate exist-
ence range of an effective point cloud can be obtained. 
There are still some noises in these point clouds caused 
by the environment and the camera, which must be 
removed via the second filtering. The second filtering 
method is statistical filtering [61], which is based on the 
assumption that the average distance between all points 
in the point cloud and their m neighboring points follows 
the Gaussian distribution. During statistical filtering, 
Eq. (5) is used to calculate the average distance between 
each point in the point cloud and its m neighbor-
ing points. After that, determine the mean value µ and 
standard deviation σ of the mean distance between each 
point in the point cloud. Finally, the effective point cloud 
range is determined as (µ− k · σ ,µ+ k · σ) , and k is the 
coefficient. If the average distance between a point in the 
point cloud and m neighboring points is not within this 
range, the point is considered to be noise. The values of 
m and k in statistical filtering influence the filtering effect.

where xi , yi , and zi respectively represent the coordinate 
values of the target point on the three coordinate axes, xj , 
yj , and zj respectively represent the coordinate values of 
the nearest points of the target point on the three coor-
dinate axes.

The value of m is related to the number of point clouds 
of the target object, that is, the value of m is affected by 
the point cloud density. The value of k is related to m . 
The smaller the value of m , the less the number of point 
clouds output by statistical filtering under the condition 
of a constant k value. The speed of the modeling will be 
improved by reducing the number of point clouds on 
the premise that the three-dimensional structure of the 
peanut plant is not distorted. An algorithm is designed to 
optimize the k and m values for improving the filtering 

(5)

d =
1

m

m∑

j=1

√(
xi − xj

)2
+

(
yi − yj

)2
+

(
zi − zj

)2

Kinect v2

Y

X

Z

O

Fig. 3  The coordinate system of Kinect v2
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effect, that is, selecting different k and m values to change 
the number of output 3D point clouds and spatial 3D 
structure, then determining the optimized parameter val-
ues by comparing the output effect. The steps of the algo-
rithm are shown in the following.

Step 1: The value of k is set to 1, and the m value gradu-
ally decreases from 100 until the filtered point cloud spa-
tial 3D structure starts to deteriorate significantly. The m 
value before this phenomenon is considered the appro-
priate m value.

Step 2: The value of m is set to the value determined in 
step 1, and the k value gradually increases from 0 until 
the filtered point cloud spatial 3D structure starts to 
deteriorate significantly. The k value before this phenom-
enon is considered the appropriate k value.

Step 3: The values of m and k obtained in the above 
steps are applied to the statistical filtering process as 
optimized parameters.

After optimizing the parameters, the number of point 
clouds after statistical filtering balances the accuracy and 
speed in the subsequent modeling process.

Fusion and modeling of point clouds of peanut plant
The filtered point clouds can be directly fused to generate 
a 3D model if the exact coordinates of each point in the 
point clouds obtained by two Kinects can be determined 
in the same spatial coordinate system. The position infor-
mation of the point cloud acquired by Kinect v2 is deter-
mined by the coordinate system in which it is located. In 
the real world, the same point has a different coordinate 
position in each of the Kinect v2 coordinate systems. 
The coordinate system of the Kinect v2 in various posi-
tions must be converted to the same coordinate system in 
order to restore the point cloud relative positions in the 
real world [62].

In this paper, a 3D model reconstruction method 
based on point cloud spatial coordinate (PSC) is 
designed. To determine the spatial coordinate position 
of the point cloud, the coordinate system where Kinect 
v2-No.1 is used as the reference coordinate system, and 

the coordinate system of Kinect v2-No.2 is converted 
to Kinect v2-No.1. The conversion method is shown 
in Fig.  4, and the fusion and modeling steps of point 
clouds in the PSC method are shown in the following.

Step 1: Kinect v2-No.2 keeps the Y-axis unchanged 
and rotates 180 degrees to the right, then the position 
of Q(x, y, z) in the original coordinate system is changed 
to Q′ (x′, y′, z′) in the rotated coordinate system. The 
relation between Q′ and Q is shown in Eq. (6).

Step 2: The rotating coordinate system of Kinect 
v2-No.2 moves 1400  mm to the left along the Z-axis, 
then the position of point Q′ (x′, y′, z′) changes to 
Q"(x", y", z") . The relation between Q" and Q′ is shown 
in Eq. (7).

Step 3: The color 3D point cloud coordinates from 
Kinect v2-No.2 can be converted to the coordinate 
system in which Kinect v2-No.1 is located using the 
method described as follows:

(6)






x
′

= −x

y
′

= y

z
′

= −z

(7)






x′′ = x′

y′′ = y′

z′′ = z′ − 1400

Table 1  Calibration results of Kinect v2 parameters

Parameters Value Explain

Xmin − 20 cm Peanut was planted in the center of the flowerpot, and the Kinect v2’s lens was aligned with the center of the flowerpot. 
Normally, the width of peanut plants does not exceed 40 cm

Xmax 20 cm

Ymin 0 cm Kinect v2’s lens was at the same height as the upper edge of the flowerpot. Normally, the height of peanut plants does not 
exceed 40 cm

Ymax 40 cm

Zmin 50 cm The data measured by Kinect v2 in the Z-axis direction is the distance from the target to the lens. Kinect v2 was 70 cm away 
from the center of the flowerpot, and the width of the peanut plants is no more than 40 cm

Zmax 90 cm

Kinect v
No.1

Z

Y

X

Kinect v
No.2

(x,y,z)

Z'

Y
X'

(x',y,z')

Z''

Y
X''

(x'',y,z'')

Q

Q'Q''

Rotate

Translation

O

OO

1400mm

Fig. 4  Transformation diagram of the coordinate system
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Step 4: The color point clouds originating from Kinect 
v2-No.1 and Kinect v2-No.2 are spliced directly accord-
ing to the transformed coordinate position, and then the 
3D model of the peanut plant is generated.

Accuracy evaluation of 3D reconstruction model of peanut 
plant
A common method of evaluating the accuracy of the 
3D reconstruction model is to compare the phenotypic 
parameters calculated from the 3D model with those 
measured manually. These parameters are generally 
height, width, and volume [20, 50]. Based on the recon-
structed 3D model, the height, width, length, and volume 
of the peanut plant were calculated through Eq. (9).

where, the Hc , Wc , Lc , and Vc respectively represent the 
height, width, length, and volume of the 3D model of the 
peanut plant. Yh_max x, Xw_max , and Zl_max represent the 
maximum value of the 3D model on the three coordinate 
axes respectively, and Yh_min , Xw_min and Zl_min represent 
the minimum value of the 3D model on the three coordi-
nate axes respectively.

The ground-truth data were obtained by taking manual 
measurements. The parameters of the peanut plant were 
measured with a ruler, and each of them was measured 
three times and the average value was taken. The syn-
thetic accuracy of 3D model reconstruction was evalu-
ated through Eq. (10).

where Acc represents the model accuracy, and Hm , Wm , 
and Lm respectively represent the actual measurement 
results. The Vm was the volume of the peanut plant calcu-
lated from the actual measured values.

Experiment and results
In this section, we presented the experimental design 
and results of the 3D model reconstruction of the peanut 
plant.

Environment and scheme design of experiment
The experiment was carried out in the greenhouse of 
Hebei Agricultural University (115°28′35 "E, 38°50′57" 

(8)
�
x′′, y′′, z′′

�
= [x, y, z]




−1 0 0

0 1 0

0 0 −1



−
�
0 0 1400

�

(9)






Hc = Yh_max − Yh_min

Wc = Xw_max − Xw_min

Lc = Zl_max − Zl_min

Vc = Hc ×Wc × Lc

(10)Acc =

[
1−

(∣∣∣∣
Hc −Hm

Hm

∣∣∣∣×
1

4
+

∣∣∣∣
Wc −Wm

Wm

∣∣∣∣×
1

4
+

∣∣∣∣
Lc − Lm

Lm

∣∣∣∣×
1

4
+

∣∣∣∣
Vc − Vm

Vm

∣∣∣∣×
1

4

)]
×100%

N) from May 2021 to July 2021, and peanut variety Jihua 
No. 5 was planted. The planting method was potted, 
and the planting time was May 19, 2021. Twenty peanut 
plants with good growth were randomly chosen for the 
experiment. The experiment collected data on three dis-
tinct stages of peanut growth: sprout, seedling, and flow-
ering stage, with collection dates of June 8, June 18, and 
July 1, respectively. For each peanut plant, two Kinect 
v2 captured one frame respectively when each experi-
ment, and generated a group of point clouds. A group 
of point clouds of each peanut plant was acquired once 
in each grown stage, and three groups of point clouds 
were collected from each peanut plant during the whole 
experiment. A total of 60 groups of point clouds were 
obtained for twenty peanut plants throughout the whole 
experiment.

Data filtering results
Figure 5 illustrates data filtering results on the original 3D 
point cloud. Figure 5a shows the original 3D color point 
cloud before filtering, which is obtained by a side view 
Kinect v2. The effect of PassThrough filtering is depicted 
in Fig.  5b. After PassThrough filtering, only the point 
cloud containing the peanut plant is retained. The effect 
of statistical filtering is depicted in Fig. 5c. Certain inter-
ference and outlier noises are eliminated following statis-
tical filtering. Compared to the effect of straight-through 
filtering, statistical filtering connects most point clouds, 
clears discrete point clouds, and clarifies the edges of the 
peanut plant.

Results of 3D model construction
Figure  6 illustrates the process and results of recon-
structing the peanut plant model using the filtered point 
cloud. As illustrated in the figure, two Kinect v2 point 

clouds splice together following conversion to form a 
complete three-dimensional peanut plant structure. Fig-
ure  6 shows that the point cloud density at the edge of 
the peanut plant 3D model is low due to the dual effects 
of filtering and diffuse reflection. The point cloud density 
in the center of the model is high, where the point cloud 
obtained by two Kinect v2 are overlapping.

Accuracy evaluation result of 3D model
The experimental data were collected at three distinct 
stages of peanut growth, and during each experiment, 
twenty targets were reconstructed in three dimensions. 
The statistical data of ground- truth and calculated 
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values based on the 3D model for geometric traits of pea-
nut plants at the sprout stage are shown in Table  2. As 
shown in Table  2, the maximum accuracy of the calcu-
lated value of the peanut plant’s height relative to the real 
value on the ground-truth is 99.37%, and the minimum is 
91.06%. The maximum accuracy of the calculated value 
of the peanut plant’s width relative to the real value on 
the ground-truth is 100.00%, and the minimum is 82.33%. 
The maximum accuracy of the calculated value of the 
peanut plant’s length relative to the real value on the 
ground-truth is 99.05%, and the minimum is 69.63%. The 
maximum accuracy of the calculated value of the pea-
nut plant’s space volume relative to the real value on the 
ground-truth is 99.74%, and the minimum is 73.12%.

The statistical data of ground- truth and calculated val-
ues based on the 3D model for geometric traits of pea-
nut plants at the seedling stage are shown in Table 3. As 
shown in Table  3, the maximum accuracy of the calcu-
lated value of the peanut plant’s height relative to the real 
value on the ground-truth is 99.64%, and the minimum is 
95.78%. The maximum accuracy of the calculated value 
of the peanut plant’s width relative to the real value on 
the ground-truth is 99.10%, and the minimum is 85.15%. 
The maximum accuracy of the calculated value of the 
peanut plant’s length relative to the real value on the 

ground-truth is 99.66%, and the minimum is 80.33%. The 
maximum accuracy of the calculated value of the pea-
nut plant’s space volume relative to the real value on the 
ground-truth is 96.70%, and the minimum is 75.70%.

The statistical data of ground- truth and calculated val-
ues based on the 3D model for geometric traits of pea-
nut plants at the flowering stage are shown in Table 4. As 
shown in Table  4, the maximum accuracy of the calcu-
lated value of the peanut plant’s height relative to the real 
value on the ground-truth is 100.00%, and the minimum 
is 95.59%. The maximum accuracy of the calculated value 
of the peanut plant’s width relative to the real value on 
the ground-truth is 98.84%, and the minimum is 88.45%. 
The maximum accuracy of the calculated value of the 
peanut plant’s length relative to the real value on the 
ground-truth is 99.69%, and the minimum is 71.89%. The 
maximum accuracy of the calculated value of the pea-
nut plant’s space volume relative to the real value on the 
ground-truth is 99.62%, and the minimum is 73.97%.

The average accuracy of peanut plants’ height, width, 
length, and volume calculated through the 3D model 
from ground-truth is 97.37%, 95.33%, 90.69%, and 90.28% 
in all three growth stages, respectively. Figure  7 shows 
the correlation between the ground-truth measurements 
and the 3D model calculations for each peanut plant dur-
ing the whole course of the experiment. It can be seen 
from Fig. 7, that there is an obvious positive correlation 
between the manual measured values and model calcu-
lated values, and the Goodness of Fit R2 for plants’ height, 
width, length, and volume is 0.9956, 0.9654, 0.8670, and 
0.9815, respectively.

Table  5 shows the average accuracy of each evalua-
tion parameter value calculated by the 3D reconstruc-
tion model at various growth stages of peanut plants. As 
shown in Table 5, the average of calculated values of all 

(a)                                                    (b)                                                       (c)
Fig. 5  Data filter results. a 3D color point cloud. b PassThrough filtering result. c Statistical filtering result

Point cloud-No.1 Point cloud-No.2

Rotation

Translation

Front view Side view Vertical view

Fig. 6  3D Reconstruction process and results



Page 9 of 16Liu et al. Plant Methods           (2023) 19:17 	

evaluation parameters is gradually increasing with the 
growth of peanut plants, and the total average value of 
the three stages exceeds 90%. The Acc , synthetic accu-
racy, exceeds 92% in all growth stages.

Discussion
In this section, some interference factors in 3D modeling 
are analyzed, the influence of parameters setting on sta-
tistical filtering results are discussed, and the PSC 3D 
modeling method proposed in this paper is compared 
with the ICP-based modeling method in terms of mod-
eling speed.

Analysis of factors affecting the accuracy of 3D model 
reconstruction
The depth camera has great application potential for 3D 
plant reconstruction and the acquisition of phenotypic 
data. Its advantages include simultaneous acquisition of 
color and depth information, high accuracy, and low cost 
of operation [21, 40]. Calibrating the depth camera imag-
ing system and obtaining its precise parameters helps 
improve the accuracy of the 3D reconstruction model. 
The acquisition of rotation and translation matrix is 
the key to generating a complete 3D model of the pea-
nut plant, which reflects the corresponding relationship 

between the point cloud and the actual spatial location 
of the target. The depth camera data can be converted to 
the color camera coordinate system using a rotation and 
translation matrix. Therefore, in a 3D model reconstruc-
tion system with a fixed structure, the calibration of the 
position of the sensor itself and between the sensors is 
the premise of building an accurate 3D model.

The accuracy of the data in the depth image obtained 
by Kinect v2 is inconsistent. The error in the center 
position of the depth image is the smallest, which 
increases with the distance from the center. The maxi-
mum error occurs at the edge of the depth image [63]. 
This feature leads to the decline of modeling accuracy 
at the border when reconstructing the 3D model based 
on the point cloud obtained by Kinect v2, as shown 
in Fig.  8. As shown in Fig.  8, the 3D model is recon-
structed from the point cloud data obtained by Kinect 
v2 placed on its left and right sides. From the front, the 
point cloud is absent in the middle part of the flower 
pot 3D model. There are two possible explanations for 
this occurrence. First, the middle section represents 
the edge of the point cloud data acquired by Kinect v2 
on the left and right. The inherent characteristics of 
Kinect v2 lead to the decline of the measurement accu-
racy of the edge part and the quality of the point cloud 

Table 2  Statistical data of geometric traits obtained by measured and 3D model calculated of peanut plant at sprout stage

The M represents the measured values, the C represents calculated values based on the 3D model. The AP represents the accuracy percentage of calculated values, 
and AP = (1− |M − C|/M)100%

Peanut plant Height (mm) Width (mm) Length (mm) Volume (cm3)

M C AP (%) M C AP (%) M C AP (%) M C AP (%)

1 102 93 91.18 176 175 99.43 101 124 77.23 1813.15 2018.10 88.70

2 134 137 97.76 103 108 95.15 115 110 95.65 1587.23 1627.56 97.46

3 157 153 97.45 129 126 97.67 115 113 98.26 2329.10 2178.41 93.53

4 159 160 99.37 80 82 97.50 92 98 93.48 1170.24 1285.76 90.13

5 148 149 99.32 179 182 98.32 120 110 91.67 3179.04 2982.98 93.83

6 159 152 95.60 167 167 100.00 210 212 99.05 5576.13 5381.41 96.51

7 135 138 97.78 126 136 92.06 117 124 94.02 1990.17 2327.23 83.06

8 110 105 95.45 118 118 100.00 141 128 90.78 1830.18 1585.92 86.65

9 155 151 97.42 190 171 90.00 141 157 88.65 4152.45 4053.90 97.63

10 90 88 97.78 215 214 99.53 135 176 69.63 2612.25 3314.43 73.12

11 124 116 93.55 232 273 82.33 181 164 90.61 5207.01 5193.55 99.74

12 126 133 94.44 137 139 98.54 156 161 96.79 2692.87 2976.41 89.47

13 158 150 94.94 219 213 97.26 162 157 96.91 5605.52 5016.15 89.49

14 65 69 93.85 147 144 97.96 138 103 74.64 1318.59 1023.41 77.61

15 134 129 96.27 150 126 84.00 144 177 77.08 2894.40 2876.96 99.40

16 123 112 91.06 214 209 97.66 183 171 93.44 4816.93 4002.77 83.10

17 165 156 94.55 196 202 96.94 139 147 94.24 4495.26 4632.26 96.95

18 124 128 96.77 168 148 88.10 146 131 89.73 3041.47 2481.66 81.59

19 125 121 96.80 146 139 95.21 158 143 90.51 2883.50 2405.12 83.41

20 162 168 96.30 295 282 95.59 156 129 82.69 7455.24 6111.50 81.98
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of the edge part. The second reason is that a portion 
of the edge discrete point cloud data is eliminated as 
noise during the two filtering processes. Although 
the peanut plant is irregular and the point cloud loss 
is less than that of the flower pot, the reconstruction 
accuracy of the 3D model in the length direction is 
still lower than that of other evaluation parameters, as 
shown in Table 5.

Additionally, in some studies, some phenotypic 
parameters calculated by 3D models are compared 
to manually measured values to ensure that recon-
structed models are accurately evaluated [26, 53]. 
However, there are certain irregularities and uncer-
tainties in plant growth. There is a risk of error 
increase regardless of whether it is measured manu-
ally or calculated using a model. Moreover, the plant 
is a non-rigid structure susceptible to external inter-
ference, such as wind, resulting in sway, which affects 
the evaluation of modeling accuracy. The result is 
more objective if the 3D model accuracy is evaluated 
with the height, width, length, and volume of the plant. 
Thus, by evaluating the accuracy of 3D model recon-
struction using multiple phenotype parameters, we 

can avoid the uncertainty introduced by a single evalu-
ation index of plant.

Influence of parameters setting on the statistical filtering 
effect
Selecting the number of adjacent points m and the effec-
tive point cloud range coefficient k directly affects the 
filtering effect in statistical filtering. When k equals 
1.0, Table  6 illustrates the effect of various m values on 
the number of filtered point clouds and 3D modeling 
accuracy. The data in Table 6 is the average of 60 three-
dimension models constructed by all 20 peanut plants in 
three growth stages. As illustrated in Table 6, the number 
of filtered point clouds increases with the increase of the 
m value. On the assumption that the three-dimensional 
structure of the peanut plant is not harmed, the more 
point clouds filtered out, the more effective the filter-
ing effect and the faster the post-processing speed. The 
highest accuracy of the 3D model is 92.39%, which occurs 
when the m value is 35. At this time, the number of fil-
tered point clouds is at a medium level, so the m value of 
35 is appropriate.

Table 3  Statistical data of geometric traits obtained by measured and 3D model calculated of peanut plant at seedling stage

The M represents the measured values, the C represents calculated values based on the 3D model. The AP represents the accuracy percentage of calculated values, 
and AP = (1− |M − C|/M)100%

Peanut plant Height (mm) Width (mm) Length (mm) Volume (cm3)

M C AP (%) M C AP (%) M C AP (%) M C AP (%)

1 96 99 96.88 144 138 95.83 201 214 93.53 2778.62 2923.67 94.78

2 274 273 99.64 220 200 90.91 148 158 93.24 8921.44 8626.80 96.70

3 263 271 96.96 202 175 86.63 176 179 98.30 9350.18 8489.08 90.79

4 232 236 98.28 203 206 98.52 223 201 90.13 10,502.41 9771.82 93.04

5 299 292 97.66 264 250 94.70 215 202 93.95 16,971.24 14,746.00 86.89

6 274 268 97.81 222 210 94.59 176 144 81.82 10,705.73 8104.32 75.70

7 166 173 95.78 212 210 99.06 227 239 94.71 7988.58 8682.87 91.31

8 249 246 98.80 207 216 95.65 163 173 93.87 8401.51 9192.53 90.58

9 338 334 98.82 213 234 90.14 292 291 99.66 21,022.25 22,743.40 91.81

10 201 195 97.01 166 160 96.39 248 223 89.92 8274.77 6957.60 84.08

11 258 254 98.45 259 251 96.91 288 273 94.79 19,244.74 17,404.84 90.44

12 266 269 98.87 192 204 93.75 300 241 80.33 15,321.60 13,225.12 86.32

13 263 261 99.24 288 300 95.83 301 267 88.70 22,798.94 20,906.10 91.70

14 156 160 97.44 151 146 96.69 242 229 94.63 5700.55 5349.44 93.84

15 262 257 98.09 224 235 95.09 178 202 86.52 10,446.46 12,199.79 83.22

16 225 221 98.22 212 218 97.17 215 185 86.05 10,255.50 8912.93 86.91

17 259 256 98.84 202 172 85.15 205 196 95.61 10,725.19 8630.27 80.47

18 283 276 97.53 222 224 99.10 199 229 84.92 12,502.37 14,157.70 86.76

19 281 283 99.29 201 215 93.03 172 154 89.53 9714.73 9370.13 96.45

20 270 263 97.41 226 231 97.79 321 303 94.39 19,587.42 18,408.16 93.98
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Table  7 shows the results of the point cloud filtering 
when the m value is 35 and the k value is varied. The data 
in Table  7 is the average of 60 three-dimension mod-
els constructed by all 20 peanut plants in three growth 
stages. It can be seen from Table  7 that with the larger 
value of k , the filtering effect on outliers decreases. With 
the smaller value of k , the filtering effect is strengthened, 
and the number of point clouds remaining after filter-
ing decreases. The highest accuracy of the 3D model 
is 92.39%, which occurs when the k value is 1.0. At this 
time, the number of filtered point clouds is at a medium 
level, so the k value of 1.0 is appropriate. The statistical 
filtering parameters for peanut plants are determined 
after the test and analysis, which is k = 1.0 and m = 35.

Analysis of 3D modeling speed
The accuracy of the PSC 3D model reconstruction 
method proposed in this paper has been evaluated in 
“Accuracy evaluation result of 3D Model” section. In 
addition to the accuracy, the modeling speed is also an 
important indicator to assess the modeling method. An 
experiment comparing with the iterative closest point 
(ICP) algorithm was carried out to verify the modeling 
speed of the PSC method. Currently, the ICP algorithm is 
the most widely used method for reconstructing 3D point 

clouds. The ICP algorithm locates the same target point 
in two different clouds, calculates their position rela-
tionship, and then splices the point cloud through this 
relationship to reconstruct the 3D model. The ICP algo-
rithm’s primary objective is to determine the geometric 
relationship between corresponding points in two-point 
clouds. It cannot be applied if there is no corresponding 
point in two-point clouds. A comparative test is used to 
compare the proposed method’s modeling speed to that 
of the ICP algorithm. One peanut plant was randomly 
selected and placed on a rotating table for the test. The 
Kinect v2 was used to collect RGB and depth data once 
every ten degrees of rotation, and the data were num-
bered from Pre1 to Pre36 for a total of 36 times. The three 
pieces of point clouds obtained from the positions with 
an interval of 120° as a group was used for the modeling 
by the ICP algorithm. For example, Group1-ICP includes 
point clouds obtained from shooting angles of 0° (Per1), 
120° (Per 13), and 240° (Per 25), respectively. Addition-
ally, the two pieces of point clouds obtained from two 
positions separated by 180° as a group was used for the 
PSC modeling. For example, Group1-PSC includes point 
clouds obtained from shooting angles of 0° (Per1) and 
180° (Pre19). A total of 36 pieces of point clouds were 

Table 4  Statistical data of geometric traits obtained by measured and 3D model calculated of peanut plant at flowering stage

The M represents the measured values, the C represents calculated values based on the 3D model. The AP represents the accuracy percentage of calculated values, 
and AP = (1− |M − C|/M)100%

Peanut plant Height (mm) Width (mm) Length (mm) Volume (cm3)

M C AP (%) M C AP (%) M C AP (%) M C AP (%)

1 156 159 98.08 151 146 96.69 244 234 95.90 5747.66 5432.08 94.51

2 273 273 100.00 309 321 96.12 299 247 82.61 25,222.74 21,645.35 85.82

3 210 219 95.71 225 222 98.67 281 202 71.89 13,277.25 9820.84 73.97

4 297 292 98.32 344 348 98.84 223 232 95.96 22,783.46 23,574.91 96.53

5 281 285 98.58 370 357 96.49 219 236 92.24 22,769.43 24,011.82 94.54

6 319 315 98.75 231 239 96.54 231 212 91.77 17,022.16 15,960.42 93.76

7 268 266 99.25 229 224 97.82 324 287 88.58 19,884.53 17,100.61 86.00

8 270 276 97.78 303 338 88.45 220 210 95.45 17,998.20 19,590.48 91.15

9 361 360 99.72 306 311 98.37 406 359 88.42 44,849.20 40,193.64 89.62

10 247 240 97.17 222 238 92.79 331 289 87.31 18,150.05 16,507.68 90.95

11 331 326 98.49 209 217 96.17 349 303 86.82 24,143.47 21,434.83 88.78

12 299 292 97.66 230 238 96.52 227 205 90.31 15,610.79 14,246.68 91.26

13 311 314 99.04 386 398 96.89 296 278 93.92 35,533.62 34,742.22 97.77

14 204 195 95.59 331 343 96.37 217 220 98.62 14,652.71 14,714.70 99.58

15 336 336 100.00 293 310 94.20 193 188 97.41 19,000.46 19,582.08 96.94

16 315 304 96.51 330 343 96.06 324 325 99.69 33,679.80 33,888.40 99.38

17 252 257 98.02 296 281 94.93 246 219 89.02 18,349.63 15,815.52 86.19

18 337 330 97.92 224 231 96.88 296 292 98.65 22,344.45 22,259.16 99.62

19 314 309 98.41 223 227 98.21 164 174 93.90 11,483.61 12,204.88 93.72

20 321 325 98.75 232 240 96.55 395 368 93.16 29,416.44 28,704.00 97.58
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combined into 12 groups using this method, and each 
group was different from the others. The comparative 
tests’ statistical results are summarized in Table 8.

As shown in Table  8, the reconstruction time for the 
3D model using the ICP algorithm ranges between 
4.618  s and 5.953  s, with an average of 5.429  s. Similar 

results were also obtained in the study of Yuan et al. [64], 
in which four RGB-D cameras were used to collect data, 
and the foot 3D model reconstruction takes approxi-
mately 5 s by the ICP algorithm. This shows that there is 
no significant difference in the time cost of scanning the 
target from three or four angles and reconstructing the 

Fig. 7  Correlation of peanut plants’ geometric traits between manual ground-truth and model calculations. a fitting results of peanut plants’ height, 
b fitting results of peanut plants’ width, c fitting results of peanut plants’ length, d fitting results of peanut plants’ volume

Table 5  Accuracy evaluation results of 3D model of peanut at different growth stages

The 3D model evaluation 
parameters

Values of the sprout 
stage (%)

Values of the seedling 
stage (%)

Values of the flowering 
stage (%)

Average values of all 
three growth stages 
(%)

Height 95.88 98.05 98.19 97.37

Width 95.16 94.65 96.18 95.33

Length 89.25 91.23 91.58 90.69

Volume 89.17 89.29 92.38 90.28

Acc 92.37 93.30 94.58 93.42
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3D model according to the ICP algorithm. ICP algorithm 
requires that point clouds from different views must have 
overlapping parts, which is similar to SV and SfM. The 
more overlap of the point clouds, the higher accuracy of 
the 3D reconstruction model, but the more time spent 
for modeling. Hu et al. [49] scanned the leafy vegetables 
from 18 views and used ICP algorithm to model them. It 
spent at least 3.73 min to process the data of a vegetable.

The ICP algorithm is powerless if there is no over-
lap in the point cloud. The PSC algorithm proposed in 
this paper can effectively solve this problem, and the 
PSC algorithm reconstructs the 3D model in 2.032 s to 
2.355 s with an average of 2.139 s for the peanut plants. 
The model’s accuracy obtained by the ICP algorithm 
ranges from 89.87 to 98.65%, with an average of 94.82%. 
The model’s accuracy obtained using the PSC method 
ranges from 91.89 to 95.60%, with an average of 93.30%. 
Compared with other plant 3D modeling methods, 
the modeling accuracy of the method proposed in this Fig. 8  Side view of the 3D reconstruction model with the flower pot

Table 6  Comparison of filtering effect when k value is 1.0 and m takes different values

Number of point clouds before 
filtering

m value Number of filtered point 
clouds

Number of remaining point 
clouds

3D model 
accuracy 
(%)

9675 65 774 8901 92.14

9675 60 767 8908 92.02

9675 55 762 8913 92.35

9675 50 757 8918 92.30

9675 45 750 8925 92.35

9675 40 742 8933 92.29

9675 35 733 8942 92.39

9675 30 728 8947 92.03

9675 25 725 8950 91.99

9675 20 716 8959 92.11

9675 15 710 8965 92.32

Table 7  Comparison of filtering effect when m value is 35 and k has different values

Number of point clouds before 
filtering

k value Number of filtered point 
clouds

Number of remaining point 
clouds

3D model 
accuracy 
(%)

9675 1.4 461 9214 91.81

9675 1.3 515 9160 91.89

9675 1.2 580 9095 92.01

9675 1.1 652 9023 92.11

9675 1.0 733 8942 92.39

9675 0.9 835 8840 92.27

9675 0.8 951 8724 92.34

9675 0.7 1088 8587 92.32

9675 0.6 1261 8414 92.24

9675 0.5 1461 8214 92.19
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paper has obvious advantages [17, 21]. The accuracy of 
the PSC algorithm for 3D model reconstruction is 1.52 
percent lower than that of the ICP algorithm, but the 
time consumed for the 3D reconstruction only is 39.4% 
of the ICP algorithm. The PSC algorithm can recon-
struct a 3D model close to the accuracy of the ICP algo-
rithm at a speed of 2.54 times, which demonstrates the 
performance ratio advantages of the PSC algorithm.

Conclusions
In this paper, a 3D model reconstruction method of 
the peanut plant based on Kinect v2 was designed. 
Two Kinect v2s were used to generate a 3D model of 
the peanut plant through data filtering and coordinate 
transformation. The experiment was conducted at vari-
ous stages of peanut growth, and the 3D models were 
evaluated using the synthetic accuracy based on the 
plant height, width, length, and volume of the peanut, 
respectively. The experimental results indicate that the 
peanut plant 3D reconstruction model’s accuracy is 
92.37%, 93.30%, and 94.58% at the sprout stage, seed-
ling stage, and flowering stage respectively, and 93.42% 
for the growth stages. Compared to the ICP method, 
the proposed method is 2.54 times faster with closed 
accuracy. The reconstruction method for the 3D model 
of the peanut plant described in this paper is capable 
of rapidly and effectively establishing a 3D model of the 
peanut plant while also meeting the modeling require-
ments for other species’ breeding processes. In sub-
sequent research, we will attempt to reconstruct the 

three-dimensional model of the plant of multiple pea-
nuts simultaneously.
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