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Abstract 

Background  Selection is one of the essential skills whereby breeders reduce the population size and increase the 
chance of success. Various selection methods with special applications have been developed. Superior genotypes are 
assessed according to interesting traits, including univariate, multivariate, phenotypic, genotypic, etc.

Methods  Mathematical calculation of the traits’ importance based on the genetic makeup of investigated popula-
tion (average degree of dominance/additive involved in the action of genes) and arbitrary genetic parameters is 
functional. In this paper, a general model for multivariate selection has been presented whereby the selection can be 
made for (a) more than one interesting trait, (b) the trait(s) with complex inheritance, (c) finding superior genotypes 
from among a large-scale population, (d) finding superior genotypes in segregating generations and (f ) finding 
tolerant genotypes to stresses. This model is developed based on biometric concepts in four steps. MATLAB script is 
provided for the model, and users can easily apply that to identify the most suitable genotypes after data collection 
according to the breeding purposes.

Results  The main features of this model are simplicity, precision, repeatability, and speed (improving several traits 
simultaneously). All the steps and the analysis of the results are explained step by step in a case study.

Keywords  Modified analytical hierarchy process, Multipurpose selection, Repeatable selection, Single plant selection, 
Stability index, Stability of broad sense heritability

Background
Assessing genetic diversity can help the breeders to 
obtain important information from the population 
and to determine the breeding strategy. “Selection” 
is one of the most important skills in plant breeding 
which is affected by genetic diversity. In other words, 

maximizing the response to selection depends on opti-
mizing the use of available genetic diversity [1]. Breed-
ing purposes determine the characteristics of superior 
genotypes. Fruit yield, fruit quality, tolerance to biotic/
abiotic stress, and early ripening are the most impor-
tant traits that breeding programs follow. Unfortu-
nately, it has been found in many investigations that 
desirable quality-related traits have a negative or insig-
nificant correlation with performance. Also, many eco-
nomic traits are polygenic with a complex inheritance 
pattern [2–4]. According to the symmetrical or asym-
metrical distribution of genes with positive or negative 
effects on traits, the superior parents do not always 
produce superior progenies [5]. One of the ways to 
improve interesting traits with complex inheritance 
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is to consider them as the dependent variable and 
improve them along with some other correlated traits 
as independent variables. The more the amounts 
of heritability and correlation with the dependent 
variable(s), the more the value of the independent vari-
able in selection [6].

One of the reliable parameters to evaluate the vari-
ables’ effect on each other is to calculate genetic cor-
relation by the statistical designs [7]. This correlation is 
better than Pearson’s correlation due to the elimination 
of environmental effects in estimating the relationship. 
Broad sense heritability is a type of heritability calcu-
lated from the ratio of genetic variance to phenotypic 
variance and can be estimated by statistical designs [8, 
9].

The stability of independent variables is an important 
parameter for evaluation, especially in stress condi-
tions. The lower the effect of stress on a variable, the 
more stable the variable. The stability of traits and/or 
genotypes in different environments has been investi-
gated by different researchers [10, 11]. Determining the 
stability of the traits/genotypes in different conditions 
by regression analysis has already been introduced and 
performed by other researchers [12–14].

In recent years some scientists used mathemati-
cal concepts such as artificial neural network, genetic 
algorithms, and the Modified Analytical Hierarchy 
Process (MAHP) to make the best decision [6, 15, 16]. 
One of the effective multivariate selection methods in 
plant breeding is index selection, which can be done by 
mathematical methods. Despite all the advantages, it is 
not a popular method for breeders. One of the reasons 
is the variability of the traits’ coefficient from one gen-
eration/condition to another [17, 18]. Therefore, con-
sidering the traits’ stability to calculate the index can 
minimize the changes in the traits’ coefficient. In this 
regard, MAHP has been developed by [6] as a practical 
use of AHP [19] in index selection.

In this paper, a multivariate selection model is pre-
sented whereby the traits’ importance is calculated 
mathematically based on the arbitrary genetic param-
eters, the special purposes of the breeding program, 
and the particular competitive genotypes. The basis 
of the model is the characterization of the traits and 
genotypes before the selection by available parameters. 
Two new genetic parameters were introduced and used 
in this paper: the Stability Index (SI) and the Stabil-
ity Index of Broad-Sense Heritability (SIBH). To bet-
ter understand, a case study on some tomato families 
is presented, and the implementation of the model is 
explained step by step.

Materials and methods
Methodology
The proposed model has been developed according to 
the following well-known biometric concepts;

Concept one: It is usually important to improve yield 
and quality in plant breeding [5].

Concept two: Traits related to yield and quality are 
almost polygenic [5].

Concept three: Differences in the expression of the dif-
ferent genes (dominant and additive effects) caused com-
plicated inheritance patterns of polygenic traits [4, 20].

Concept four: Because simple univariate selection has 
low repeatability and the results cannot be predicted in 
the next generations, multivariate selection is recom-
mended to improve traits with complicated inheritance 
patterns [6, 21].

Concept five: In multivariate selection, traits with higher 
correlation with interesting traits are more important [6].

Concept six: Among the traits correlated with interest-
ing traits, one with significant physiological effects is 
more important in selection [6].

This model is done by following steps;

Step 1) Determining the inheritance pattern of the 
interesting traits for breeding, such as fruit yield, qual-
ity, ripening time, stress tolerance, etc., by preliminary 
experiments or literature review.

Step 2) Determining all morphological, phenological and 
physiological traits related to interesting traits (step 1) 
and determining their inheritance pattern by preliminary 
experiments or literature review.

Step 3) Creating competitive conditions for genotypes 
and measuring all possible traits (determined in steps 1 
and 2) and calculating genetic parameters effective in the 
selection, such as correlation with interesting traits, her-
itability, expected genetic advance, and stability in differ-
ent conditions. Other statistical methods may be needed 
to calculate the parameters, such as analysis of variance, 
different types of correlation, distance/similarity matrix, 
etc.

Step 4) Weighting all the measured traits and scoring the 
competing genotypes by MAHP.

A case study on tomato families introduces the follow-
ing model.
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Measured traits and abbreviations
In this experiment, 18 physiological, phenological, and 
morphological traits were measured according to the fol-
lowing descriptions;

Number of days to 50% flowering (DTF), number of days 
to 50% fruit formation (DFF), number of days to harvest-
ing (DTH), plant height (H), cluster number per plant 
(CN), fruit number per plant (FN), fruit yield per plant 
(Yld), average of single fruit weight (SFW), average of sin-
gle fruit volume (SFV), fruit density (FD), fruit water con-
tent (FWC), relative chlorophyll content (SPAD), fruit juice 
acidity (pH), fruit juice electrical conductivity (EC), total 
dissolved solids (TDS), fruit juice salinity (Sal), total soluble 
solids (TSS), and relative water content (RWC).

Plant material, experimental design, and method for 
measuring traits and genetic parameters are presented in 
detail (see Additional file 1).

Estimations and analysis
Genetic parameters calculation was explained in detail (see 
Additional file 1).

The Stability Index of Broad-Sense Heritability (SIBH) 
and the Stability Index (SI) were introduced and used as 
stability parameters to determine the stability of traits in 
different conditions.

The SIBH is calculated by Eq. 1.

(1)SIBH = BH2/BH1

where BH2 and BH1 are the estimated h2
b
 of a trait in 

stress and normal experiments, respectively.
The large amount of SIBH means;

•	 Trait changes in different conditions appear more in 
genetic diversity.

•	 Genetic diversity plays an important role in trait con-
trol, especially in stress conditions.

•	 Selection can be effective in improving traits.
•	 Thus, the large value of SIBH means a higher trait 

value in the selection.

Research on proteome variations has revealed that the 
impact of the genotype on the proteome variations may 
be much higher than the stress effect [22]. In such cases, 
the existence of a method to measure the effect of genetic 
diversity on the occurrence of traits like SIBH can be 
important.

The SI is the absolute of the linear regression coefficient 
of data in the normal condition (as the independent vari-
able) and data in the stress condition (as the dependent 
variable). The less the amount of SI, the more the stability 
of the trait. This parameter is just like the simple linear 
regression of Eberhart and Russell (1966), with the differ-
ence that it is calculated for traits.

MAHP was used according to [6] with the following 
steps:

Fig. 1  Aligning families, traits and parameters in MAHP. 1–57 integers; families DTF; Number of days to 50% flowering, DFF Number of days to 50% 
fruit formation, DTH Number of days to harvesting, Yld fruit yield per plan, SFW average of single fruit weight, SFV average of single fruit volume, FD 
fruit density, FWC fruit water content, SPAD relative chlorophyll content, pH fruit juice acidity, EC fruit juice electrical conductivity, TDS total dissolved 
solids, Sal fruit juice salinity, TSS total soluble solids, RWC​ relative water content. SI stability index, SIBH stability index of broad sense heritability, 
rgYld-N genetic correlation with Yld in normal experiment, rgTSS-N genetic correlation with TSS in normal experiment, rgYld-S genetic correlation 
with Yld in Stress experiment, rgTSS-S genetic correlation with TSS in stress experiment, EGA-N expected genetic advance in normal condition, EGA-S 
expected genetic advance in stress condition
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Step 1) Aligning traits and families: According to Fig. 1.

Step 2) Calculating weights of traits: Forming trait 
comparison matrices based on each of the calculated 
genetic parameters and then calculating the eigenvectors 
of the resulting matrices. In the following, combining the 
main eigenvectors and obtaining the weights of the traits.

Step 3) Calculating weights of families: Forming fam-
ily comparison matrices based on each trait and then cal-
culating the eigenvectors of the resulting matrices. In the 
following, combining the main eigenvectors and obtain-
ing the score of families.

The construction of pairwise comparison matrices is 
based on parameters (for weighting traits) or traits (for 
scoring genotypes). For example, in the case of T traits 
and P parameters, there are N consistency comparison 
matrices (T × T dimensions where, Aij = 1/Aji.). The 
following points in constructing pairwise comparison 
matrices must be considered:

(1) The data must be standardized if parameters/traits 
have different units.

(2) Low amounts for some traits or parameters (in the 
presented case study: phenological traits and parameter 
of SI) are important. Before standardizing data, each 
must be transformed based on the maximum value 
(Eq. 2).

where TDi is ith transformed data, Di is ith data, and MD 
is the maximum value.

(3) Constructed comparison matrix is a consistency 
matrix where all its variations are compressed in an 
Eigenvector [23–25].

(4) The main Eigenvalue (λ) is calculated according to 
Eq. 3;

where CM is the comparison matrix, λ is the main Eigen-
value, and I is the N × N identity matrix. In consistency 
matrices, the main Eigenvalue is a single non-zero value.

(5) The main Eigenvector (x) related to the λ is calcu-
lated according to Eq. 4;

where x is the main Eigenvector that is defined by Gauss-
ian elimination.

In this paper, calculations of ANOVA, genetic param-
eters, SI, SIBH, and MAHP were done by MATLAB ver 
[26]. The total data and MATLAB script for calculating 
MAHP are presented in additional files (see Additional 
files 2 and 3).

(2)TDi = MD−Di

(3)|CM − �I | = 0

(4)(CM − �I)x = 0

Results
The proposed model has been implemented step by 
step in the case study:

Step 1) Interesting traits were fruit yield and total solu-
ble solids. Many related studies were previously done to 
determine their inheritance pattern, such as [27]. Many 
other researchers approved polygenic and complicated 
inheritance.

Step 2) Introduced traits in material and methods were 
investigated in the literature review. In addition, some 
previous studies were done by [6]. All of them are poly-
genic and are controlled by additive and dominance 
effects. Thus, they have a complicated inheritance.

Step 3) Statistical methods were used to calculate genetic 
parameters after data gathering from competing geno-
types. ANOVA, estimating genetic correlation with Yld 
and TSS, SI, SIBH, EGA, and heatmap clustering were 
used for this step.

Tables  1 and 2 show ANOVA, h2
b
 and EGA for all 

the traits in normal and drought stress experiments, 
respectively. Families had significant differences in 
almost all traits. Regarding the three traits of H, CN, 
and FN, the families did not significantly differ in the 
two experiments. These traits showed an amount of 
around zero or negative amounts in parameters of H2

b
 

and EGA. Thus, they can be ignored from the selection 
process. Other traits had positive and nonzero amounts 
of H2

b
 and EGA.

Table  3 shows some estimated genetic parameters of 
traits, including SI, SIBH and genetic correlation with 
Yld and TSS in normal and drought stress experiments. 
Except for SI, the larger amounts of the parameters for 
each trait, the larger effect on selection and the larger 
weight for the trait. The value of SI near zero means more 
trait stability in different conditions.

Step 4) The selection of the remaining traits can be made 
on the average of the data in two experiments. MAHP has 
been used to weigh traits, and then scoring families based 
on them has been done. Figure 1 shows aligning families, 
traits, and parameters. Table  4 shows juxtaposed eigen-
vectors obtained from the pairwise comparison matrices 
of traits and the final weight of traits. According to the 
weights, the most effective traits in selection were deter-
mined as SFV, EC, TDS, Sal, and TSS, respectively. Table 5 
shows the final score of families. The best families selected 
based on the proposed model were determined as 2, 3, 8, 
14, 23, 25, 31, 39, 41, and 56, respectively. Based on the 
final score, these families were in the top 5% of 57 families.
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Discussion
Genetic diversity in the population helps breeders 
increase the next generation’s average by selecting 
superior genotypes. Plant breeding and selection are 
not possible without genetic diversity. In the following, 

based on the mentioned concepts, it is explained how 
the proposed model can be used for selection. In the 
case study, the measured traits were weighted, the fam-
ilies were scored, and the model’s logic was explained 

Table 1  ANOVA, broad sense heritability ( H2

b
 ) and Expected Genetic Advance (EGA) in normal experiment

a , b means significant in 5% and 1% probability level, respectively

DTF Number of days to 50% flowering, DFF Number of days to 50% fruit formation, DTH Number of days to harvesting, H plant height, CN cluster number per plant, 
FN fruit number per plant, Yld fruit yield per plan, SFW average of single fruit weight, SFV average of single fruit volume, FD fruit density, FWC fruit water content, SPAD 
relative chlorophyll content, pH fruit juice acidity, EC fruit juice electrical conductivity, TDS total dissolved solids, Sal fruit juice salinity, TSS total soluble solids, RWC​ 
relative water content

S.O.V DF Mean of squares

DTF DFF DTH H CN FN Yld SFW SFV

Replication 2 207.462 124.936 12.848 27821.134a 19490.528a 1672.741a 215637.324 6144.584b 1084.634b

Families 56 140.670 149.298a 53.089b 6432.100 4202.610 303.535 3147800.590b 985.280 53080.267b

Error 112 116.718 101.864 5.925 7955.570 5145.226 379.873 552932.699 1214.939 206.868

H
2

b
– 0.170 0.318 0.888  ~ 0  ~ 0  ~ 0 0.824  ~ 0 0.996

EGA% – 3.474 5.320 5.556  ~ 0  ~ 0  ~ 0 37.292  ~ 0 123.350

S.O.V DF Mean of squares

FD FWC SPAD pH EC TDS Sal TSS RWC​

Replication 2 0.085a 2.110 3.506 0.187 0.798 0.226 0.275 1.351 0.004

Families 56 0.513b 117.172b 208.135b 2.276b 9.750b 2.707b 3.320b 16.396b 0.045b

Error 112 0.023 13.219 23.396 0.252 1.078 0.304 0.368 1.826 0.003

H
2

b
– 0.954 0.887 0.888 0.889 0.889 0.888 0.889 0.889 0.928

EGA% – 87.949 27.805 23.163 32.911 50.153 49.494 49.538 60.426 27.237

Table 2  ANOVA, broad sense heritability ( H2

b
 ) and Expected Genetic Advance (EGA) in drought stress experiment

a , b means significant in 5% and 1% probability level, respectively

DTF Number of days to 50% flowering, DFF Number of days to 50% fruit formation, DTH Number of days to harvesting, H plant height, CN cluster number per plant, 
FN fruit number per plant, Yld fruit yield per plan, SFW average of single fruit weight, SFV average of single fruit volume, FD fruit density, FWC fruit water content, SPAD 
relative chlorophyll content, pH fruit juice acidity, EC fruit juice electrical conductivity, TDS total dissolved solids, Sal; fruit juice salinity, TSS total soluble solids, RWC​ 
relative water content

S.O.V DF Mean of squares

DTF DFF DTH H CN FN Yld SFW SFV

Replication 2 218.690 211.480 14.368a 227.468 30.037 1.803 8475.547 85.938 235.887

Families 56 134.679a 125.251b 44.377b 2375.152 1591.293 124.455 999824.592b 406.842 18095.968b

Error 112 80.589 73.366 4.577 3293.174 1991.688 154.764 112924.005 397.958 306.065

H
2

b
– 0.402 0.414 0.897  ~ 0  ~ 0  ~ 0 0.887 0.022 0.983

EGA% – 8.003 6.334 5.150  ~ 0  ~ 0  ~ 0 50.721 0.775 147.304

S.O.V DF Mean of squares

FD FWC SPAD pH EC TDS Sal TSS RWC​

Replication 2 0.017 31.146a 54.415a 0.271 0.833 0.228 0.289 1.718 0.006

Families 56 0.657b 90.521b 157.793b 2.969b 9.003b 2.512b 3.134b 18.659b 0.036b

Error 112 0.014 9.696 16.842 0.329 1.011 0.277 0.349 2.081 0.010

H
2

b
– 0.978 0.893 0.893 0.889 0.888 0.890 0.889 0.888 0.720

EGA% – 82.017 26.680 20.235 39.370 47.776 47.313 47.531 64.804 22.042
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Table 3  Genetic parameters of measures traits

DTF Number of days to 50% flowering, DFF Number of days to 50% fruit formation, DTH Number of days to harvesting, Yld fruit yield per plan, SFW average of single 
fruit weight, SFV average of single fruit volume, FD fruit density, FWC fruit water content, SPAD relative chlorophyll content, pH fruit juice acidity, EC fruit juice electrical 
conductivity, TDS total dissolved solids, Sal fruit juice salinity, TSS total soluble solids, RWC​ relative water content

SI stability index, SIBH stability index of broad sense heritability, rgYld-N genetic correlation with Yld in normal experiment, rgTSS-N genetic correlation with TSS in 
normal experiment, rgYld-S genetic correlation with Yld in Stress experiment, rgTSS-S genetic correlation with TSS in stress experiment

Traits SI SIBH rgYld-N rgTSS-N rgYld-S rgTSS-S

DTF 0.087 2.359 − 0.604 0.134 0.169 0.163

DFF 0.070 1.304 − 0.374 0.050 0.242 0.165

DTH 0.051 1.010 − 0.170 0.214 0.132 0.235

Yld 0.040 1.076 1.000 − 0.211 1.000 0.046

SFW 0.187 0.094 1.000 − 0.430 0.992 − 0.287

SFV 0.223 0.987 0.931 − 0.232 0.916 0.019

FD 0.173 1.025 − 0.808 0.363 − 0.922 0.062

FWC 0.050 1.006 0.253 − 0.171 − 0.114 0.045

SPAD 0.020 1.006 0.091 0.009 − 0.087 − 0.077

pH 0.074 1.000 0.140 0.019 0.108 − 0.088

EC 0.203 0.998 − 0.203 0.754 0.016 0.705

TDS 0.200 1.002 − 0.200 0.758 0.017 0.708

Sal 0.210 0.999 − 0.200 0.754 0.008 0.705

TSS 0.113 1.000 − 0.211 1.000 0.046 1.000

RWC​ 0.733 0.776 0.596 − 0.012 0.401 − 0.154

Table 4  Eigenvectors obtained from the pairwise comparison matrix of traits and the final weights

Bolded values are the most important traits in selection

DTF Number of days to 50% flowering, DFF Number of days to 50% fruit formation, DTH Number of days to harvesting, Yld fruit yield per plan, SFW average of single 
fruit weight, SFV average of single fruit volume, FD fruit density, FWC fruit water content, SPAD relative chlorophyll content, pH fruit juice acidity, EC fruit juice electrical 
conductivity, TDS total dissolved solids, Sal fruit juice salinity, TSS total soluble solids, RWC​ relative water content

SI stability index, SIBH stability index of broad sense heritability, rgYld-N genetic correlation with Yld in normal experiment, rgTSS-N genetic correlation with TSS in 
normal experiment, rgYld-S genetic correlation with Yld in Stress experiment, rgTSS-S genetic correlation with TSS in stress experiment, EGA-N expected genetic 
advance in normal condition, EGA-S expected genetic advance in stress condition

Traits SI SIBH rgYld-N rgTSS-N rgYld-S rgTSS-S EGA-N EGA-S Final weight

DTF 0.096 0.540 − 0.224 0.075 0.027 0.099 0.018 0.038 0.668

DFF 0.078 0.298 − 0.139 0.028 0.039 0.100 0.027 0.030 0.461

DTH 0.056 0.231 − 0.063 0.119 0.021 0.142 0.028 0.024 0.560

Yld 0.044 0.246 0.371 − 0.118 0.160 0.028 0.190 0.238 1.160

SFW 0.207 0.022 0.704 − 0.240 0.961 − 0.174 0.036 0.004 1.520

SFV 0.247 0.226 0.345 − 0.129 0.147 0.011 0.627 0.692 2.167
FD 0.192 0.235 − 0.300 0.202 − 0.148 0.038 0.447 0.385 1.051

FWC 0.055 0.230 0.094 − 0.095 − 0.018 0.027 0.141 0.125 0.560

SPAD 0.022 0.230 0.034 0.005 − 0.014 − 0.047 0.118 0.095 0.443

pH 0.082 0.229 0.052 0.011 0.017 − 0.053 0.167 0.185 0.690

EC 0.225 0.228 − 0.075 0.420 0.003 0.426 0.255 0.225 1.707
TDS 0.222 0.229 − 0.074 0.422 0.003 0.428 0.252 0.222 1.704
Sal 0.233 0.229 − 0.074 0.420 0.001 0.426 0.252 0.223 1.710
TSS 0.125 0.229 − 0.078 0.557 0.007 0.605 0.307 0.305 2.057
RWC​ 0.812 0.178 0.221 − 0.007 0.064 − 0.093 0.139 0.104 1.417
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by assessing the statistical and physiological relation-
ships between the traits.

Concepts one and two
Increasing product quality may be as important as 
increasing product yield in a breeding program, espe-
cially in the case of crops and vegetable breeding. Based 
on the type of yield and quality-related data obtained 
from counting or measuring, it is obvious the interesting 
traits are polygenic. Also, the polygenic nature of these 
traits can be seen in this case study.

Concepts three and four
The dominant or additive effects of genes controlling a 
trait have special effects on inheritance and make it diffi-
cult to predict the selection response. Thus, these effects 
must be assessed before the selection process. Direct 
selection of traits controlled by the dominance effect may 
not show suitable EGA in the next generation, so direct 
selection cannot be useful for traits with low breeding 
values [27]. Assessing h2

b
 , along with EGA, in the next 

generation can be more effective than h2
b
 alone. Indeed, 

EGA can help in decision-making instead of breeding 
value and estimating additive effect when it is impossible 
to calculate these parameters by the available data [27, 
28].

The genetic diversity of the different families was inves-
tigated in terms of all measured traits on normal and 
drought stress conditions. The traits without significant 
diversity in the competitive families were ignored. Tables 1 
and 2 show the results of ANOVA, h2

b
 and EGA of traits in 

normal and drought stress experiments, respectively. Yld 
and TSS were the main interesting traits, so the breeding 
program was done to improve them. Interesting traits had 
a high value of h2

b
 in both normal and drought stress con-

ditions. TSS had high EGA in both normal and drought 
stress conditions. Yld had a medium value of EGA in 
stress conditions and a low value of EGA in normal condi-
tions. Therefore, the univariate direct selection is not rec-
ommended for any of these traits in normal and drought 
stress conditions. Theoretically, some traits with no sig-
nificant variability in different genotypes can be eliminated 
from the multivariate selection. For example, in tomato 
families, although H, CN and FN have an important physi-
ological role in fruit yield, they cannot be used as a variable 
in multivariate selection because of the non-significant dif-
ference among the genotypes in both normal and drought 
stress conditions.

Selection of traits with higher values of h2
b
 and EGA can 

be more effective. Therefore, these values can be used as 
two parameters for weighting the traits.

Concepts five and six
The more the correlation between a trait with interesting 
traits, the more it affects them. This effect may be positive 
or negative. According to Table 3, the genetic correlation 
between two interesting traits of Yld and TSS (dependent 
variables) and other traits (independent variables) in nor-
mal and drought stress conditions can be considered an 
important parameter. The most stable trait from normal to 
drought stress conditions was SPAD. The greatest amount 
of SIBH was seen for DTF. Thus, changes in normal and 
drought stress conditions appear more in genetic diversity, 
and selection can effectively improve that.

The most important traits and the best families
According to Table 4, the most important traits for selec-
tion were SFV and TSS, respectively. They were the most 
effective traits on dependent variables. Many investiga-
tions have shown the importance of the mentioned traits 
on various plants [29–32]. Still, there is no research on 
weighting traits and determining their importance mathe-
matically by considering their inheritance pattern and sta-
bility. Selection based on TSS can effectively improve that 
in the next generation because of the high EGA in normal 
and drought stress conditions and a good genetic correla-
tion between that and some other independent variables. 
However, Yld was not an important trait for direct selec-
tion. Although Yld was one of the interesting traits, the 
selection of superior genotypes based on that cannot be 
effective in the next generations.

Suppose the results of calculating the genetic parameters 
of traits in different conditions are similar. In that case, 
selection principles in different conditions can be consid-
ered the same, and selection can be made based on the 
average genotypes in different conditions. If the behavior 
of the traits in different conditions is completely differ-
ent, different breeding strategies must be considered in 
each condition. Tables 1 and 2 show similar behaviors of 
the traits in terms of h2

b
 and EGA in normal and drought 

stress conditions. Therefore, the score of genotypes can 
be calculated based on the average values in two condi-
tions. Selected families by this model are the best choices 
to construct the next generation’s population. They will be 
more likely to produce a population with a high Yld, TSS, 
and more drought tolerant than other families. Because 
of the consideration of traits’ stability parameters against 
drought stress and their inheritance pattern, selected 
families are more likely to construct a generation with a 
high yield/quality and drought stress tolerance than other 
families. Finally, it should be noted that, in case of a low 
heritability for target trait(s) and an unpredictable aver-
age of the next generation’s population, it is better to use 
correlated heritable traits as independent variables in mul-
tivariate selection. Therefore, the use of this model is not 
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limited to advanced generations. This is an advantage of 
the proposed model, which ranks the genotypes accord-
ing to several genetic parameters and is independent of the 
homozygosis percentage.
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