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Abstract 

Background  Crop breeding based on root system architecture (RSA) optimization is an essential factor for improv-
ing crop production in developing countries. Identification, evaluation, and selection of root traits of soil-grown crops 
require innovations that enable high-throughput and accurate quantification of three-dimensional (3D) RSA of crops 
over developmental time.

Results  We proposed an automated imaging system and 3D imaging data processing pipeline to quantify the 3D 
RSA of soil-grown individual plants across seedlings to the mature stage. A multi-view automated imaging system 
composed of a rotary table and an imaging arm with 12 cameras mounted with a combination of fan-shaped and 
vertical distribution was developed to obtain 3D image data of roots grown on a customized root support mesh. A 
3D imaging data processing pipeline was developed to quantify the 3D RSA based on the point cloud generated 
from multi-view images. The global architecture of root systems can be quantified automatically. Detailed analysis of 
the reconstructed 3D root model also allowed us to investigate the Spatio-temporal distribution of roots. A method 
combining horizontal slicing and iterative erosion and dilation was developed to automatically segment different root 
types, and identify local root traits (e.g., length, diameter of the main root, and length, diameter, initial angle, and the 
number of nodal roots or lateral roots). One maize (Zea mays L.) cultivar and two rapeseed (Brassica napus L.) cultivars 
at different growth stages were selected to test the performance of the automated imaging system and 3D imaging 
data processing pipeline.

Conclusions  The results demonstrated the capabilities of the proposed imaging and analytical system for high-
throughput phenotyping of root traits for both monocotyledons and dicotyledons across growth stages. The pro-
posed system offers a potential tool to further explore the 3D RSA for improving root traits and agronomic qualities of 
crops.

Keywords  Automated imaging, Multi-view stereo, 3D root phenotyping, Global/local root trait, Root segmentation, 
Initial root angle

*Correspondence:
Hongxin Cao
caohongxin@hotmail.com
Wenyu Zhang
research@wwery.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13007-023-00988-1&domain=pdf


Page 2 of 20Wu et al. Plant Methods           (2023) 19:11 

Background
The root system is responsible for the absorption of soil 
water and nutrients and the anchorage of plants [1]. Ideal 
root architecture maximizes the uptake efficiency of soil 
nutrients and thus increases crop photosynthesis and 
yield. Three-dimensional (3D) root system architecture 
(RSA) plays an essential role in genotype selection for 
crop breeding [2]. Identifying, evaluating, and selectively 
introducing dominant root traits into breeding programs 
may be a promising area for improving food security in 
developing countries [3]. However, due to the opacity of 
the root growth medium and RSA complexity, the obser-
vation and identification of relevant quantitative pheno-
types of root systems are difficult.

Traditional root measurement methods are time-con-
suming and destructive, so interest in high-throughput 
root phenotyping platforms is increasing in public and 
private research. High-throughput automated root phe-
notyping platforms have been developed to obtain two-
dimensional (2D) images of roots grown in soil/non-soil 
media [4–6]. Due to cost-effective sensors, a high degree 
of automation, easy scaling of throughput, and conveni-
ent operation, these platforms are widely used for the 
quantification of high-throughput root phenotyping and 
the selection of dominant root traits. However, the lim-
ited growing space may have a great effect on RSA, and 
many root traits are difficult to quantify in 2D.

3D representations of root systems in controlled envi-
ronments can now be produced using non-destructive 
3D root phenotyping systems. Optical imaging systems 
can quantify the 3D growth dynamics of young roots 
grown in transparent media [7, 8]. X-ray computed 
tomography (X-ray CT) [9, 10], magnetic resonance 
imaging (MRI) [11], and neutron radiography [12] enable 
in  situ observation of the 3D RSA growing naturally in 
soil medium. Root models derived from MRI and X-ray 
CT images enable the quantification of root growth over 
time and the acquisition of spatiotemporal 4D RSA in 
the laboratory [13–15]. However, the application of these 
methods is limited by shortcomings such as high cost, 
technical difficulties, time-consuming imaging process, 
throughput expansion difficulties, and the limited size of 
cultivation containers.

Methods for root phenotyping under controlled con-
ditions that are mainly applicable to plant seedlings may 
not reliably reproduce results expected in field condi-
tions, particularly in the reproductive stage [16, 17]. 
Field-based phenotyping at the late growth stage can 
provide insights into post-embryonic root structures of 
mature field-grown plants [16]. At present, a technical 
bottleneck still exists in the observation of mature roots 
of field-grown plants. Invasive root tracing involves 

the transparent surface of a buried minirhizotron with 
a cylindered imaging sensor, but only a small propor-
tion of roots is visible [18]. Shovelomics, a destructive 
method for the quantification of mature field-grown 
roots, can be used to acquire measurements by excava-
tion, 2D imaging, and automated image processing [19, 
20]. Recently, DIRT/3D, an image-based root pheno-
typing platform, successfully measured root traits from 
mature field-grown maize (Zea mays L.) root crowns 
extracted by the shovelomics method [21]. Although 
the sampling was destructive, the extraction efficiency 
of root traits was improved with high-throughput 
measurements using an automated imaging system and 
root analysis software. However, data on roots obtained 
by this method was incomplete (e.g., only root crowns 
close to the root base were quantified). To span, the gap 
between the laboratory and field, the root mesocosm 
system, which allows for unconstrained root growth, 
excavation, and preservation of completeness 3D RSA, 
was developed [22]. However, this approach comes at 
the cost of labor and space.

Currently, available methods are all imperfect as 
each has its own key objective and spectrum of trade-
offs. 2D root phenotyping and 3D gel optical platforms 
achieve low-cost, high-throughput root phenotyp-
ing at the expense of the natural growth environment. 
X-ray CT and MRI enable in-situ observation of the 3D 
RSA growing naturally in soil medium at the expense 
of equipment cost and throughput. Shovelomics and 
DIRT3D enable the  rapid acquisition of root pheno-
types in the field at the expense of root integrity. To 
provide a balance among throughput, natural growth 
medium, cost, the integrity of RSA, and observable 
period, we provided a root growth system and devel-
oped an automated multi-view imaging system and 
data processing pipeline for the quantification of the 
3D RSA at different stages for both monocotyledonous 
and dicotyledonous crops grown in field-like growth 
medium. One maize (Zea mays L.) and two rape-
seed (Brassica napus L.) cultivars at different growth 
stages were selected to evaluate the performance of 
our system. The root growth system struck a balance 
among field-like growth medium, preservation of 3D 
RSA, relatively low constraints on root growth, ease 
of handling, and low costs. The automated imaging 
system improved the capture of 3D root phenotypic 
information while also reducing the cost of labor and 
investment. The global and local root traits can be auto-
matically extracted by the proposed pipeline, which can 
balance the simplicity of global traits of the whole root 
system and the elaboration of local traits of different 
root types for comprehensive 3D RSA analysis.
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Results
Development of an automated imaging and 3D 
reconstruction pipeline
A multi-view automated imaging system composed 
of a rotary table and an imaging arm with 12 cameras 
mounted with a combination of fan-shaped and verti-
cal distribution was developed to obtain 3D image data 
of the root system (Fig.  1). A root growth system was 
constructed to cultivate plants and retain the root struc-
ture (Figs. 2 and 3A, B). All 432 images with hemispheri-
cal distribution around the root system were obtained 
within 3  min (cameras performed imaging with each 
10° rotation of the imaging arm) using the automated 
imaging system (Fig. 3C, D). The structure-from-motion 
and multi-view stereo (SFM-MVS) pipeline was used 
to generate dense 3D point clouds of root systems from 
multi-view images. SFM-MVS is related to using math-
ematical techniques to recover the 3D scenes and objects 
viewed from multiple positions (multi-view) of cam-
eras. The SFM technique was first used to conduct an 
alignment of the multi-view images for calculating the 
epipolar geometry of the scenes and thus generating the 
sparse 3D point cloud (e.g., feature points; Fig.  3F), the 
camera positions (Fig. 3E) as well as the internal param-
eters of the camera lenses (e.g., focal length, radial, and 
tangential distortion coefficients). The MVS algorithm 
[23, 24] was then employed to generate the dense point 
clouds (Fig. 3G) given the information related to epipo-
lar geometry calculated by the SFM technique. The MVS 

algorithm operated on all the pixel values, which ena-
bled the recovery of the majority of geometric details in 
the scenes. The 3D point cloud of the black root support 
mesh was removed by chromatic aberration denoising 
(Fig. 3H).

The automated imaging system and 3D reconstruction 
pipeline enabled the high-efficiency acquisition of multi-
view images and high-precision reconstruction of 3D 
point clouds of root systems (Fig. 3). The visual compari-
son of the captured 3D RSA (with and without the root 
support mesh) of two crops (maize and rapeseed) and 
the variation between two rapeseed cultivars (NY22 and 
NZ1818) at different growth stages is shown in Fig. 4.

Quantitative analysis of the global root architecture
The reconstructed 3D point cloud of the root system 
allowed us to assess a variety of root traits. A custom-
ized 3D point cloud processing pipeline was developed 
to automatically extract the global root traits of root 
depth, width, width/depth, convex hull volume (CHV), 
volume (V), surface area (SA), solidity (V/CHV), and 
total root length (TRL) (Fig. 5A–D). To examine the 3D 
RSA of rapeseed, we extracted the global root traits of 
two rapeseed cultivars at five growth stages (Fig.  5E–
L). The root width exhibited a characteristic S-shaped 
curve because of the limitations of the containers 
(Fig.  5F). The root depth, convex hull volume, sur-
face area, volume, and total root length (Fig. 5E, H–K) 
increased with growth stages, whereas the width/depth 

Fig. 1  Automated imaging system. A 3D representation of the components of the automated imaging system, including a rotary table, an imaging 
arm, a pedestal, and a black background plate. B Automated imaging device prototype. An imaging control box (ICB) was mounted on the opposite 
side of the imaging arm, and a ground base station (GBS) was configured. C ICB components. D Human–machine interface (HMI) on the GBS
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ratio (Fig. 5G) decreased with growth stages. The solid-
ity was higher at the 1st and 5th sampling stages and 
lower at the 2nd–4th sampling stages (Fig. 5L). The root 
surface area, volume, and total length were higher in 
NY22 than in NZ1818 at the 4th–5th sampling stages, 
indicating that NY22 may have denser root growth than 
NZ1818 (Fig. 5I–L). The automated extraction pipeline 
of global root traits was suitable for both monocotyle-
donous (maize) and dicotyledonous (rapeseed) roots 
(Fig. 5 and Additional file 1: Fig. S1).

The relationships between the extracted global root 
traits and the dry weight of root systems, and between 
the extracted and measured global root traits were 

investigated. All root depth, convex hull volume, sur-
face area, volume, and total length were significantly 
correlated with dry weight (r2 > 0.8, P < 0.0001; Fig. 6A, 
C–F). The r2 values of root surface area, volume, and 
total length were higher than those of convex hull vol-
ume and root depth. A strong linear relationship was 
observed between the measured and extracted root 
depth and root width (r2 > 0.9, P < 0.0001; Fig.  6G, H), 
so did the relationship between the measured and 
extracted total root length (r2 > 0.9, P < 0.0001; Fig. 6I). 
However, there were a few outliers, which suggested 
that certain mismatches existed between the extracted 
and measured values, and the relative error was slightly 
larger for root systems at the late growth stage.

Fig. 2.  3D representation of the components of the custom-made root growth system. A Custom-made root support mesh. B Top view of a 
stainless steel mesh disc. C Root support mesh, half-cylinders, and four pipe hoops



Page 5 of 20Wu et al. Plant Methods           (2023) 19:11 	

The spatio‑temporal distribution of root system
Based on the reconstructed 3D root model, the spatial 
distribution of root density was analyzed by calculating 
the root length in non-overlapping cubes of approxi-
mately 3 cm3 encompassing the whole root system. Root 
length density (RLD) was analyzed separately for mature 
maize and rapeseed (Additional file  1: Fig. S2). Further, 
the 3D spatial distribution of root systems of two rape-
seed cultivars from the vegetative to the reproductive 
stage was analyzed (Fig. 7A). Root density was higher in 
the region of 30 cm deep and 10 cm wide from the root 
base. From the seedlings stage (stage 1) to the flowering 
stage (stage 5), the soil space occupied by roots gradually 
increased. NY22 occupied soil space faster in the early 
stage (stage 2). While, NZ1818 occupied more soil space 

in the late stage (stage 5), and had a relatively sparse root 
distribution.

The vertical and horizontal RLD distribution of indi-
vidual plant roots were quantified for two rapeseed culti-
vars from the vegetative to the reproductive stage (Fig. 7B 
and C). With increasing soil depth, RLD first increased 
and then decreased (Fig.  7B). The RLD all peaked at a 
depth of 10 cm, except for NZ1818 at stage 4. No signifi-
cant differences were found between the RLD profiles of 
the two cultivars at stages 1–3. Compared with NZ1818, 
the RLD of NY22 was greater in the top 10 cm but lower 
at depths below 20 cm at stage 4, and was greater in the 
top 30 cm at stage 5. The RLD decreased with increasing 
horizontal distance from the root base for both cultivars 
(Fig. 7C). No significant differences were found between 

Fig. 3  Automated imaging and 3D reconstruction pipeline. A Root growth system. B Washed root held by the support mesh system. C Automated 
imaging system. D Automatically obtained multi-view images. E Hemispherical distribution of camera imaging positions. F Generated sparse 3D 
point cloud. G Generated dense 3D point cloud. H 3D point cloud without the support mesh
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the RLD horizontal distributions of the two cultivars at 
stages 1–2. Compared with NZ1818, the RLD of NY22 
was lower at 0–5 cm away from the root base at stage 3 
and 0–10 cm away from the root base at stage 4 but was 
greater at 0–15 cm away from the root base at stage 5.

Combination of horizontal slicing and erosion dilation 
enables the segmentation of different root types
A method combining horizontal slicing and iterative ero-
sion and dilation was developed to automatically segment 
different types of roots (e.g., segment the lateral roots 
from the main root of rapeseed, or segment the nodal 
roots from the stem of maize). Take rapeseed, for exam-
ple, the 3D root model was sliced from top to bottom at 
consecutive depth levels (Fig. 8A), and a level-set image 
of a 2D projection slice of roots was obtained (Fig. 8B). 
The initial region for the main root identification on 
each slice was determined according to the main root 
on the upper slice, which is the range of the main root 
on the upper slice dilated by 10% of its area (Fig. 8C). An 
iterative erosion and dilation algorithms (imerode and 

imdilate [25]) were used to eliminate lateral root branches 
and identify the main root (Fig. 8D). The number of itera-
tions and magnitude of erosion and dilation was deter-
mined by the area of roots on each slice. The lateral roots 
were obtained using the whole root minus the main root 
(Fig.  8E). The results show that the developed method 
was effective in the automatic segmentation of different 
root types (Fig. 8F). To obtain a complete and continuous 
main root, each slice was sequentially detected to locate 
the fractured blank slice layers and connect the voxels of 
two non-blank slice layers.

Root segmentation enables automated extraction of local 
root traits
Local root traits were extracted automatically using 
algorithms developed in the 3D imaging data process-
ing pipeline. These traits were length, the average diam-
eter of the main root or lateral roots, and initial angle 
of lateral roots for dicotyledons (rapeseed) (Fig. 9A–D), 
and the total length, average diameter, initial angle, 
and the number of nodal roots and stem diameter for 

Fig. 4  Reconstructed 3D point clouds of root systems with and without the root support mesh for mature maize (A), mature rapeseed (B), and two 
rapeseed cultivars (NY22 and NZ1818) at different growth stages (C, D)



Page 7 of 20Wu et al. Plant Methods           (2023) 19:11 	

monocotyledons (maize) (Fig.  9E–F). The lateral roots 
were segmented from the main root of rapeseed, and 
the nodal roots were segmented from the stem of maize, 
using the developed root segmentation method (Figs.  8 
and 9A, E). The skeleton of the roots was extracted using 
the optimized homotopic thinning algorithm (Fig. 8B, F). 
The branching points of the 3D skeleton were extracted 
using the “branchpoints” operation in bwmorph3, and 
the 3D skeleton of lateral roots was divided into numer-
ous root segments by removing the branching points 
(Fig. 9C, G). To calculate the initial angle and the number 
of lateral roots or nodal roots, the root segments emerg-
ing from the main root or stem needed to be selected first 
(Fig. 9D, H). The closest point to the main root or stem of 

each root segment was selected and marked as the start 
point (red points in Fig. 9), and then whether the distance 
of the point to the skeleton of the main root or stem was 
less than the maximum diameter of the main root or stem 
was determined. Eligible root segments were selected to 
calculate the number and initial angle of root segments. 
The initial angle of a root segment was the vertical angle 
of the vector (green line in Fig. 9) from the point 10–15 
voxels away from the start point (blue points in Fig. 9).

The local root traits were extracted for mature maize 
at two growth stages and for two rapeseed cultivars 
(Fig.  10). For maize roots, no significant differences 
were found between the filling stage and mature stage 
in the initial angle, average diameter, the number of 

Fig. 5  Quantification of global root traits. Extraction pipeline of global root traits of root depth and width (A), convex hull volume (B), area and 
volume (C), and skeleton and total length (D) of mature maize. Root depth (E), width (F), width/depth (G), convex hull volume (H), surface area (I), 
volume (J), total length (K), and solidity (L) for two rapeseed cultivars (NY22 and NZ1818) at different stages. Significant differences were assessed 
from three repeats by standard t-tests (*p < 0.05, **p < 0.01, ***p < 0.001)
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visible nodal roots, and stem diameter (Fig.  10A, C–E), 
whereas the total length of nodal roots increased sig-
nificantly (P < 0.001; Fig. 10B). For the two rapeseed cul-
tivars, no significant differences were observed between 
NY22 and NZ1818 in the initial angle, the average diam-
eter of lateral roots, and the length and average diam-
eter of the main root (Fig.  10F–H, J), whereas the total 
length of lateral roots of NY22 was significantly higher 
than that of NZ1818 (P < 0.001; Fig.  10I). Variations 
in the initial angle of lateral roots were higher in NY22 

(SD = 21.74, C·V = 38.80%) than in NZ1818 (SD = 15.92, 
C·V = 25.98%; Fig.  10F). In addition, the initial angle 
was steeper in nodal roots of maize than in lateral roots 
of rapeseed (Fig.  10A, F). As measured from the ver-
tical direction, the former was in the range 30–50° 
(SD = 13.83, C·V = 38.11%), whereas the latter was con-
centrated at 45°–70° (SD = 18.42, C·V = 47.32%).

The local root traits that were extracted from the 3D 
point clouds showed linear relationships with their 

Fig. 6  Correlations of extracted global root traits and root dry weight (A–F) and correlations of extracted and measured global root traits (G–I). 
Root depth (A), width (B), convex hull volume (C), surface area (D), volume (E), and total root length (F) correlated with manually weighed dry 
weight; and the estimated root depth (G), width (H), and total root length (I) correlated with manually measured values. Red and blue samples 
indicated NY22 and NZ1818 rapeseed cultivars, respectively
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manually measured values for the length and diam-
eter of the main root of rapeseed and stem of maize 
(r2 > 0.98, P < 0.0001, rRMSE < 5%; Fig. 11A and B), and 
the length, diameter and initial angle for the lateral 
roots of rapeseed and nodal roots of maize (r2 > 0.67, 
P < 0.0001, rRMSE < 7%; Fig. 11C–E).

Discussion
Automated imaging system and reconstruction pipeline 
facilitates 3D root phenotyping
The root growth system consisting of PVC pipes and sup-
porting mesh adopted in this study provided a relatively 
large space for root growth and facilitated the mainte-
nance of the 3D architecture of root systems. While it 

Fig. 7  The Spatio-temporal distribution of root length density (RLD). The 3D spatial distribution of RLD (A), and the vertical (B) and horizontal (C) 
distribution of RLD for two rapeseed cultivars (NY22 and NZ1818) at different growth stages. The position of the stem base was the original 0
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could be inferred from the reconstructed 3D point cloud 
of rapeseed (Fig. 4) that the root system of rapeseed was 
limited by the size of the container. A larger container 
was required to obtain a more precise growth trajectory 
for the lateral roots of rapeseed.

The multi-view automated imaging system proposed 
in this study could efficiently obtain 3D RSA information 
for maize and rapeseed. Such information can be of great 
value for advances in high-throughput 3D root imag-
ing. Although 2D high-throughput root imaging systems 
are more accessible to the wider scientific community, 
a multi-dimensional understanding of root biology and 
mapping genes controlling complex topologies may still 
require the precision architecture afforded by 3D imag-
ing [8].

Among plant 3D reconstruction technologies, digital 
photography techniques provide an economic, efficient, 
and convenient way to generate a 3D point cloud for 
plant phenotyping. However, the manual acquisition of 
multi-view images is time-consuming and labor-intensive 

as hundreds of images are usually required to generate 
high-quality 3D point clouds. The proposed automated 
imaging system minimized intervention and provided 
efficient acquisition of multi-view images (432 images 
shot within 3  min per plant), significantly reducing the 
cost of labor and equipment. In addition, by precisely 
controlling the vertical and azimuth angles of imaging 
views, the automated imaging system could largely avoid 
the failure of 3D reconstruction, which often occurred 
when using manually acquired and unevenly distributed 
images (Additional file 1: Fig. S3).

Current installations of SFM scanners with multi-
ple cameras were designed based on different imaging 
strategies. One imaging mode included numerous cam-
eras mounted on fixed viewpoints to capture multi-view 
images around a plant, in which both plant and cameras 
were stationary [26]. This kind of installation has the 
highest imaging efficiency and is useful for high-speed 
imaging under field conditions. Other installations used 
the imaging mode of the camera in conjunction with a 

Fig. 8  Automated root segmentation pipeline. A A sliding plane slices the 3D root model from top to bottom at consecutive depth levels. B A level 
set image sequence of 2D projection slice of roots. C The initial range of main root location. D Elimination of lateral roots and identification of the 
main root. E Identification of lateral roots. F A slice sequence of the automatically segmented main root and lateral roots
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rotating table [27]. This kind of installation reduces the 
cost and the number of cameras by employing a turnta-
ble. A few cameras (usually two or three) might result 
in limited imaging perspectives, which might not apply 
to specific plants with other structural characteris-
tics. A fully automated plant phenotyping cell compris-
ing a six-axis robot and a high-precision turntable has 
been used as an active vision approach to intelligently 
capture images [28]. This imaging mode can flexibly 
acquire images needed for the reconstruction of target 
plants, tuning camera placement to match specific plant 

structures. This method is more accurate and requires 
fewer images than static imaging approaches. How-
ever, with the size restrictions related to the reach of 
the robotic arm, it might not be suitable for large plants. 
The complexity of plant structure may vary widely 
from the vegetative to the reproductive stage of the life 
cycle. To further facilitate the faithful reconstruction of 
large and/or complex plants, the proposed imaging sys-
tem increased the number of imaging perspectives to 
obtain more detailed 3D information. Therefore, the 
imaging system achieved a balance between the cost of 

Fig. 9  Local root traits extraction pipeline for rapeseed (A–D) and maize (E, F), respectively. A, E Segmentation of different root types. The blue 
voxel indicated the main root/stem; the dark gray voxel indicated the lateral/nodal roots. B, F Skeleton extraction of different root types. The black 
line indicated the main root/stem skeleton; the yellow line indicated the skeleton of lateral/nodal roots. C, G Root segmentation. Divided lateral/
nodal root segments are indicated in different colors. D, H Measurement of the initial angle. Root segments selected for initial angle measurement 
are indicated with yellow lines, start points are indicated in red, point 10 voxels away from the start point is indicated in blue, and the vector of the 
initial angle is indicated by the green line
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mechanical device/imaging sensors and the number of 
imaging perspectives that could be extended to the high-
quality 3D reconstruction of larger and/or more complex 
plants (e.g., mature densely grown roots or shoots) (Fig. 4 
and Additional file 1: Fig. S4).

Compared with the popular vision-based 3D root phe-
notyping systems for plant seedlings grown in trans-
parent media under controlled environments (e.g., the 
gel system [7]), our study transformed plant cultivation 
from non-soil to soil medium and extended the obser-
vation period to the  mature stage. In addition, we used 
more cameras as well as more imaging perspectives to 
reconstruct the complex 3D RSA at maturity with high 
resolution. Compared with the 3D root (soil-grown) 
measurement systems in the lab (e.g., X-ray and MRI), 
the advantages of our system are: (1) improved effi-
ciency; (2) low to no disturbance of complex soil environ-
ment to 3D root reconstruction; (3) reduced investment 
in hardware and software; and (4) extended observa-
tion period of root size to late growth stage. Compared 

with the vision-based 3D root phenotyping system for 
mature field-grown roots (DIRT3D) [21], our method has 
expanded the observation from only the root crowns of 
the root base at the mature stage to the whole root sys-
tem from seedling to the mature stage. In DIRT3D, the 
root systems were held horizontally during imaging. 
The mechanical support strength of the root crowns of 
mature field-grown maize is strong enough to maintain 
its structure in the absence of soil support. However, for 
most crops, the root diameter at the seedling is smaller 
and the supporting strength is weaker, and its struc-
ture will be altered after losing soil support, especially 
for the lateral root of the tap root system. We adopted a 
mesh system [29] upon which plants can be grown and 
the RSA can be maintained during imaging. The stabil-
ity and rigidity of the mesh system were improved by 
using stainless steel; thus, it was strong enough to sup-
port the large root systems of mature plants. Moreover, 
we specifically designed and adopted the combination of 
the fan-shaped and vertical arrangement of cameras, as it 

Fig. 10  Quantification of local root traits. Initial angle (A), total length (B), the average diameter (C), visible number of nodal roots (D), and stem 
diameter (E) for mature maize at two sampling stages (filling stage and mature stage). Initial angle (F), total length (I), and average diameter (J) 
of lateral roots, and length (G) and average diameter (H) of the main root for two cultivars (NY22 and NZ1818) of mature rapeseed. Significant 
differences were assessed from three repeats by standard t-tests (*p < 0.05, **p < 0.01, ***p < 0.001)
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provided a more appropriate imaging perspective for the 
root of the support mesh system, to facilitate the later 3D 
reconstruction processes. The plant rotating mode saves 
imaging space compared to the camera rotating mode. 
In addition, our method was suitable for obtaining phe-
notypic information for both aboveground and under-
ground plant parts (Additional file 1: Fig. S4).

The strengths of our method lie in its cost-effective, 
efficiency and convenience, and its adaptability to study 
different plant species (monocotyledons and dicotyle-
dons), different plant parts (root and shoot), different 
growth stages, and different experimental conditions, 
such as drought stress or effects of soil resources on 
root angle, depth, and distribution. For RSA analysis to 
be effective at the genome scale and contribute to plant 
improvement efforts, the imaging platform must have 
the capacity to phenotype thousands of plants. The 
time for measuring thousands of plants with only one 
imaging system would very likely limit the throughput 
and efficiency considerably. For systematic screening of 
a  large number of genotypes, it needs dozens of such 
imaging systems. Our imaging system costs about 4600 
US Dollars in total for a standard device with twelve 
camera sensors. From the perspective of economic 

and cost/benefits, the imaging cameras we used are 
cheap and have stable operation and fast imaging and 
transmission capabilities, which enables the continu-
ous imaging of thousands of plants. As the servomotor 
and the main imaging control module were controlled 
by the commercial PLC, the system can run stably in 
high-intensity continuous operation and can be inte-
grated into a middle-size PLC for batch control of doz-
ens of imaging systems. In addition, the imaging system 
is very easy to use and is a  high efficiency (3  min per 
plant), which greatly reduces the costs of time and 
labor for high-throughput 3D root imaging. Moreover, 
it can be easily customized or replicated to meet the 
needs of various users. These features help to increase 
the scalability of our system, as more devices can be 
built relatively cheaply and flexibly to accommodate 
more experiments and advance high-throughput root 
phenotyping.

The proposed system also has a few disadvantages. 
The fine roots might break and the root trajectory might 
slightly change despite being supported by the sup-
port mesh. Due to destructive sampling, the continuous 
observation of the root system of the same plant is not 
possible. The 40  cm diameter of the PVC pipes might 

Fig. 11  Comparisons of the length (A) and diameter (B) of the main root of rapeseed and stem of maize, and the length (C), diameter (D), and 
initial angle (E) for the lateral roots of rapeseed and nodal roots of maize between manual measurement and estimation from the reconstructed 
root systems
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constrain and alter the RSA of the  tap root system. A 
larger container was required to obtain a more precise 
growth trajectory of roots.

The 3D reconstruction method used in this study was 
effective in obtaining a digital description of 3D RSA. 
The redundant background information on each image 
was eliminated after using Masquerade (a tool included 
in 3DF Zephyr used to mask out the background pixels 
automatically, detailed information in Methods). Thus, 
the false feature matching and the amount of data trans-
ferred to online storage were effectively reduced, and the 
efficiency of 3D reconstruction was finally improved.

Quantification of root distribution and root traits enhances 
comprehensive 3D RSA analysis
Various root architecture parameters, including global 
and local root traits, could be automatically extracted 
using our pipeline (Figs. 5, 9, and 10). Therefore, the 3D 
root architecture could be quantitatively described, pro-
viding a way for further research on nutrient absorption 
by plant roots. The global root traits extracted in this 
study, including root depth, convex hull volume, surface 
area, volume, and total length, had a good correlation 
with root dry weight (Fig.  6A and C–F). It implied that 
the global root architecture parameters, such as basic 
phenotypic traits, could be used not only as an intuitive 
indicator of root size and root growth state but also for 
the estimation of root biomass, which is important for 
biological research and agricultural management.

According to the correlation of the extracted and meas-
ured values of the total root length (Fig.  6I), it can be 
inferred that the total root length was underestimated 
for the late growth/mature stage, which might be due to 
that some roots were merged into one after voxelization. 
However, it was more likely due to that the roots of the 
high branching zone were shaded from each other. In 
addition, the disconnected roots caused by the removal 
of the support mesh were also one of the reasons for 
the underestimation of the total length. The total vol-
ume and surface area of the root systems were likely to 
be underestimated due to similar reasons. According to 
the comparison of the extracted and measured values 
of the length and diameter of the main root and lateral 
roots of rapeseed and the nodal roots and stem of maize 
(Fig. 11A–D), the estimation error was in an acceptable 
range (rRMSE < 7%).

The reconstructed 3D root model enabled us to retrieve 
detailed data about the distribution of the root system 
as a function of soil depth and horizontal distance from 
the root base. The visualization of the spatial distribu-
tion of RLD provides a fast and semi-quantitative method 
of assessing how individual plants are distributing 
roots in soil (Fig.  7A). The vertical and horizontal RLD 

distribution of individual plants enables the statistical 
comparisons of root distribution across genotypes. The 
vertical and horizontal distribution of roots of different 
genotypes showed no significant difference at the early 
growth stage (stages 1–2), but a significant difference at 
the late growth stage (stages 4–5) (Fig.  7B, C). At stage 
4, for example, NY22 was much denser in the top 10 cm 
soil layer while NZ1818 was denser in the 10–30 cm soil 
layer. The root length density was calculated based only 
on visible roots, the values might be underestimated due 
to the mutual occlusion of roots, especially for the dense 
branching zone.

The extraction of local root traits (e.g., length, diam-
eter, and angle of lateral/nodal roots) requires segment-
ing the reconstructed 3D root model into individual 
roots. In this study, we introduced an automated method 
to reliably segment different root types (Figs. 8 and 9A, 
E). Automated root segmentation was difficult for dense 
roots because of occlusion among lateral or nodal roots. 
Automated root segmentation has been achieved in 2D 
root phenotyping and most of them are based on topo-
logical analysis, such as RootReader2D [30], RootSys-
temAnalyser [31], and RhizoChamber-Monitor [32]. 
However, fully automated segmentation of different root 
types in 3D remains a challenge, particularly for mature 
soil-grown crops with extremely complex topologies. 
In recent years, several powerful 3D root traits extrac-
tion tools have been developed, such as DynamicRoots 
[33], DIRT3D [21], TopoRoot [34], and 4DRoot [35]. 
DynamicRoots can produce a full branching hierarchy 
and associated root traits, while it is designed for a time-
series of simple seedling-stage roots. Its accuracy can be 
significantly affected by the disconnected and loop root 
components which are abundant in 3D images of mature 
roots. TopoRoot can obtain the complete hierarchy and 
root traits of a mature maize root system from a single 
3D image. It can deal with topological errors without the 
need for a time series. This software identifies the stem 
(hierarchy 0) of maize based on the thickness of the skel-
etons, and makes an important assumption that the roots 
higher up in the hierarchy are generally longer. How-
ever, for tap root systems (take rapeseed for example), 
there was no significant difference between the diameter 
of some parts (middle to apical) of the main root and 
that of lateral roots (especially near the base of laterals) 
(Figs. 8A and 9A), and many first-order lateral roots are 
longer than the main root (Figs. 8A and 9A). Moreover, 
some roots were disconnected due to the removal of the 
support mesh, which would affect the hierarchical analy-
sis. Therefore, TopoRoot may not be suitable to identify 
the main root and lateral roots for our 3D root model of 
rapeseed. Nevertheless, it is still outstanding in obtain-
ing the complete root hierarchy and fine-grained traits 
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of mature maize roots. 4DRoot can extract root traits 
and hierarchy based on 3D surface geometry. However, 
4DRoot was not powerful at the segmentation of lateral/
nodal roots near the root base compared with our devel-
oped algorithm (Additional file 1: Fig. S5, indicated in a 
red circle). But it is still a very powerful and easy-to-use 
3D root architectural analysis software. DIRT3D enables 
the accurate extraction of 3D root traits based on the 3D 
point cloud at the individual and crown levels. It identi-
fies the individual roots on each slice using active contour 
snake method, and then connects them to obtain the root 
trajectories. DIRT3D was also used to process the same 
point clouds of our root systems of maize and rapeseed 
(Additional file 1: Fig. S5), and the result showed that the 
identification and skeleton extraction of lateral/nodal 
roots near the root base was not precise. However, this 
software can reconnect roots that were disconnected by 
removing the support mesh. In this study, we combined 
the methods of slice segmentation and skeletonization to 
extract the 3D root traits for tap root systems and fibrous 
root systems. A horizontal slicing and iterative erosion 
and dilation method was developed (Fig.  8) and was 
effective in the automated segmentation of different root 
types (Figs. 8 and 9A, E). For the upper slices, the main 
root was coarse and the lateral roots were fine. Through 
appropriate erosion and dilation, the lateral roots were 
eliminated and only the main root was retained. While, 
for the lower slices, there was little difference between 
the diameter of the main root and lateral roots. The lat-
eral roots were eliminated by determining the initial 
location of the main root based on the main root of the 
upper slice. The developed method enables automated 
root segmentation, and then the skeleton of the lateral 
roots/nodal roots could be extracted directly to calculate 
the local root traits, including the initial angle of lateral/
nodal roots. The developed algorithm also has some limi-
tations. It was more suitable to segment the root systems 
where lateral roots were obviously thinner than the main 
root. However, for root systems with very close main root 
and lateral roots diameters, or with obvious and rapid 
bending main root, it may fail to obtain a satisfactory seg-
mentation result.

The initial angles combined with the gravitropic 
responses of individual roots can affect the spatial dis-
tribution of the root system and can ultimately influence 
the capability of a plant to access and acquire water and 
nutrient resources [2]. The root angle calculated from the 
root trajectory of the real root system is a valuable phe-
notype for parameterization of the 3D root model and 
for distinguishing genotypic variation. The number of 
nodal roots can also be a key factor for water and nutri-
ent uptake [33, 36]. However, these root traits cannot 
be accurately measured by traditional methods. Most 

root angles and root numbers estimated in 2D images 
are susceptible to measurement errors [37]. The growth 
trajectory of the roots was altered by the limited grow-
ing space, and the dense nodal roots overlapped and 
obscured each other. The information encoded in the 
shape of root systems (e.g., root angles and the num-
ber of nodal roots) could be obtained by the method 
described in this study (Figs. 9D, H and 10A, D, F). The 
proposed 3D root phenotyping pipeline provides a tool 
to understand the various changes in root architecture, 
which facilitates breeding for favorable root characteris-
tics to improve yield in suboptimal conditions, including 
drought and low soil fertility.

Conclusion
The automated imaging system proposed in this study 
efficiently acquired multi-view images (3 min per plant) 
and successfully reconstructed the 3D architecture of 
the maize and rapeseed root systems. The global and 
local root traits (e.g., length, diameter, initial angle, and 
the number of lateral/nodal roots) were obtained auto-
matically for investigating 3D RSA. Detailed analysis 
of the Spatio-temporal distribution of RLD enabled the 
comparisons of root distribution across genotypes. The 
strengths of our method lie in its low cost, high efficiency, 
and low labor intensity; relatively high root data integrity 
(complete root can be observed and measured); includ-
ing 3D spatial data (e.g., root distribution and root grav-
itropism/initial angle) and temporal data (from vegetative 
to reproductive stage); and suitable for both monocotyle-
donous (e.g., maize) and dicotyledonous (e.g., rapeseed). 
The enhanced 3D visualization and quantification capa-
bilities of our 3D root phenotyping pipeline can enable 
comprehensive 3D RSA analysis and propel advances in 
crop productivity.

Methods
Root growth system
A stainless steel root support mesh was constructed to 
support the root system and retain the 3D RSA (Fig. 2A). 
The root support mesh was composed of mesh discs with 
a diameter of 0.24–0.38 m and a grid of 10 mm × 10 mm 
(Fig. 2B), threaded rods with a height of 0.4–1.0 m, and 
flange nuts. Mesh discs were located 0.10–0.15 m apart, 
and each mesh disc was anchored to 3–4 threaded rods 
using 6–8 stainless steel flange nuts (Fig.  2A). The top 
mesh disc included an opening in the center to accom-
modate the girth of the taproot, which is the most at 
the plant base. The constructed root support mesh was 
painted black using a black waterproof matte paint.

A demountable polyvinyl chloride (PVC) pipe with a 
diameter of 0.3–0.4 m and a height of 0.4–1.0 m was used 
for plant cultivation. The PVC pipe was composed of two 
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detachable half-cylinders (Fig. 2C), which were separated 
by unloading four pipe hoops. The PVC pipe was placed 
in the field, and the root support mesh was inserted into 
the PVC pipe. Subsequently, the PVC pipe was filled with 
a 2-mm sifted soil mixture containing 50% local paddy 
soil and 50% river sand. Seeds were planted at a depth of 
30–40 mm in the center of the PVC pipe.

Automated imaging system
An automated imaging system was designed and con-
structed to rapidly capture multi-view image sequences 
(Fig.  1). The customized automated imaging system 
included a rotatable imaging arm, a pedestal, and a black 
background plate (Fig. 1A). The customized imaging arm 
was composed of an arc arm, with a radius of 1.5 m and 
an angle of 90°, and a vertical arm with a length of 0.5 m. 
Twelve low-cost, highly versatile imaging cameras (HIK-
VISION DS-2CD3T86FWDV2-I8S 4 K Outdoor IR Fixed 
Network Bullet Camera) were mounted at 10° intervals 
on the arc arm and 0.10–0.15 m intervals on the vertical 
arm. The imaging arm was mounted on one end of the 
pedestal, while a black background plate, with a width of 
0.8 m and a height of 1.5 m, was mounted on the oppo-
site side of the pedestal.

In the preliminary experiments, other camera arrange-
ment strategies (Additional file  1: Fig. S5) were tested, 
including the vertical arrangement of the cameras par-
allel to the plant root, and the approximate fan-shaped 
arrangement of the cameras focusing on the plant root. 
The results showed that the combination of the fan-
shaped and vertical arrangement of cameras with circular 
movement trajectory outperformed the other two strate-
gies for the 3D reconstruction of plant root systems (data 
not shown).

Two imaging movement modes were designed to cap-
ture multi-view images, one was that the camera stayed 
stationary while the plant rotated, and the other was that 
the cameras rotated around the static plant. To rotate 
the plant or the imaging arm, the rotary table and the 
pedestal were respectively fixed on the top of two sepa-
rate slewing bearings that were driven by a high-resolu-
tion alternating current servomotor (750 W, 3000  rpm; 
SDGA-08C11BB; Tode Technologies Co., Ltd.) and gear 
with 0.005° repositioning resolution (Fig. 1A). The move-
ment of the servomotor, which was plugged by gear 
reduction with a reduction ratio 1:10, was controlled by a 
programmable logic controller (PLC).

An imaging control box (ICB) was mounted on the 
opposite side of the imaging arm (Fig. 1B and C). It was 
mainly used for imaging control, image acquisition, real-
time image display, online debugging, and data recording 
and storage. A ground base station (GBS) was configured 
to implement movement control, parameter settings, 

real-time image display, and image acquisition and down-
loading (Fig. 1B and D).

The movement of the automated imaging system was 
controlled by the PLC installed on the GBS. A 10-inch 
human–machine interface (HMI) mounted on the GBS 
was used to control the automated imaging system and 
configure the parameters of rotation (e.g., the rotation 
rate and rotation speed of the motor, direction of move-
ment, and the angle of rotation per image set capture) 
(Fig. 1D and Additional file 1: Fig. S6).

The automated imaging control system was composed 
of the PLC, a camera imaging controller (32-channel 
relay serial port module), and 433  MHz wireless data 
transmission (Fig.  1B, C, and Additional file  1: Fig. S6). 
The PLC of the GBS relied on 433  MHz wireless data 
transmission for communication with the ICB, which was 
used to control the switch of the camera imaging control-
ler (relay) of the ICB. The ICB relay was connected to the 
alarm input interface of the camera to trigger the shut-
ter of the camera. A power over Ethernet (POE) network 
switch (24 channel full gigabit) and a solid-state disk 
video recorder (DVR, 16 channel network DVR with 4TB 
hard disk drive) were installed on the ICB. All the cam-
eras were connected to the POE switch. The POE gigabit 
switch was connected to the solid-state DVR to realize 
image transmission and storage.

A visual display and touch panel installed on the ICB 
were connected to the solid-state DVR. This ICB display 
could simultaneously display real-time images and videos 
from up to 16 cameras. The ICB touch panel was used to 
control the display screen to select an individual camera 
image for a larger window view, which was used to check 
the focus and clarity of the camera lens. A 5-inch HMI 
mounted on the ICB was connected to the camera imag-
ing controller. Each camera could be switched on or off 
using the ICB HMI. With the HDMI wireless video trans-
mission between the ICB and the GBS, real-time images 
were displayed on the GBS display. The POE gigabit 
switch of the ICB was connected to the AP gigabit net-
work bridge. The industrial control computer in the GBS 
remotely accessed the solid-state DVR of the ICB and 
acquired images by the AP gigabit network bridge.

Before automated imaging, manual focus was used 
to adjust the camera lens for shooting clear and sharp 
images. All the cameras were set with 6-mm focal length 
and 3840 × 2160 pixels. The camera configurations, such 
as aperture (F4.0) and shutter speed (1/10  s), were set 
using iVMS-4200 software (HIKVISION). The camera 
imaging controller synchronized the images captured. 
The images of all cameras were automatically transferred 
to the solid-state DVR storage. The server unit stored 
information about the static IP user account. It used the 
ONVIF protocol to transfer the images from each client 
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unit to the DVR storage. Images were downloaded and 
transferred to computers through the same network 
using the iVMS-4200 software (https://​www.​hikvi​sion.​
com/​en/​produ​cts/​softw​are/​ivms-​4200/?q=​ivms4​200%​
20ser​ies&​posit​ion=1).

3D reconstruction and data preprocessing
Multi-view image sequences captured by the imaging 
system were imported into the 3DF Zephyr Aerial pro-
prietary software (v.4.530; 3DFlow, Verona, Italy) [24, 
38] for the 3D reconstruction of individual root systems. 
This software uses SFM and MVS photogrammetry to 
recover 3D structures from image sequences [24, 38]. 
Briefly, features were identified and matched across mul-
tiple images to estimate the parameters of mathematical 
camera models and camera positions and orientations 
based on epipolar geometry. These estimates were then 
used to generate a sparse point cloud of the tie points 
with 3D coordinates, which were optimized by a self-
calibrating bundle adjustment. The self-calibrating bun-
dle adjustment was used to improve the initial estimates 
of structure (e.g., 3D positions of features) and camera 
pose parameters in SFM by minimizing a cost function 
of the difference between the projection of the feature 
points and the tracked features across images. Given the 
generated sparse point cloud with the established epipo-
lar geometry, the pixel-wise disparity was computed to 
reconstruct a disparity map for each image in the image 
sequence. The pixels were then back-projected to all 
overlapping images and triangulated to generate a dense 
point cloud [23, 39].

To improve the efficiency and accuracy of the 3D recon-
struction, a mask was applied to remove background pix-
els from root images. 3DF Masquerade (a fully automatic 
background pixels removal tool included in 3DF Zephyr, 
https://​www.​3dflow.​net/​zephyr-​doc/​en/​3DFMa​squer​
ade.​html) was used to mask out the background pixels. 
Simply pick the color of the background and all the colors 
that fall behind a certain (customizable) threshold can be 
selected and deleted automatically. This tool omitted the 
redundant background information, decreasing false fea-
ture matches during 3D reconstruction.

The 3DF Zephyr toolbox was used to orient the point 
clouds by manually defining the up vector assuming 
the plant growing from the bottom down (the negative 
z-axis). Two features/points on the support mesh were 
manually selected to measure the distance of the mesh 
diameter, and then convert the 3D point clouds to the 
actual size according to the actual size of the support 
mesh. Using the selection tool of 3DF Zephyr (https://​
www.​3dflow.​net/​techn​ology/​docum​ents/​3df-​zephyr-​
tutor​ials/​tutor​ial-​clean​ing-​point-​clouds/), the 3D point 
cloud of the black root support mesh was removed by 

selecting all the points of a given color (within a given 
threshold). Some of the reflection points of the support 
mesh need to be manually selected and removed, which 
took about 3–10  min according to different cases (the 
size of the support mesh and the number of reflection 
points). In addition, noise and outliers were removed by a 
statistical filter tool of 3DF Zephyr, which can select and 
remove all points below a certain confidence threshold to 
obtain a smoother dense point cloud.

Extraction of root traits
A 3D point cloud processing pipeline was developed to 
automated extract the root traits. 3D root traits could be 
extracted in four steps: (1) Voxelization A 3D root voxel 
model was generated from the 3D root point clouds. 
In this step, different voxelized cell sizes should be pre-
set, and the most appropriate cell size and voxelized 
model should be selected by visually contrasting the 3D 
point clouds and the 3D root model after voxelization; 
(2) Global root traits extraction Global root traits were 
extracted from the point clouds and voxels automati-
cally. Root Depth, Width and Convex Hull Volume were 
extracted based on the point clouds. Root volume, sur-
face area, and root skeleton were extracted based on the 
root voxels. The total root length was computed from the 
extracted root skeleton; (3) Root segmentation The vox-
els of different root types were segmented from the whole 
3D root voxels. A key parameter, the percentage of the 
amplified area based on the main root on the upper slice, 
should be set in this step. This parameter was selected 
empirically based on the curvature of the main root; (4) 
Detail root traits extraction Detailed root traits were 
extracted from the voxels of different root types. Root 
skeletons of different root types were extracted based 
on the voxels. Then, the length, diameter, angles, and so 
on can be computed from the skeleton of different root 
types. The processing time was about 4–7 min, including 
steps 1 (about 3–5 min) and steps 2-4 (about 1–2 min).

The 3D point clouds of root systems were converted to 
3D root voxels by a transformation algorithm/function 
pnt2vox in PAREIDOLIA [40]. The voxelization of the 3D 
root point cloud was sensitive to cell size. If the selected 
cell size was too small, it could not form a continuous 
single root (Additional file 1: Fig. S8D, (3)) or could form 
some holes on thick roots (Additional file  1: Fig. S8D, 
(4)); if the selected cell size was too large, the roots would 
become thicker (Additional file  1: Fig. S8B, (1)) and the 
adjacent roots would be merged into one (Additional 
file 1: Fig. S8B, (2)). The proper cell size used in voxeli-
zation was empirically selected by visually contrasting 
the voxelized root systems with the 3D root point clouds 
(Additional file  1: Fig. S8). The selection criterion was: 
(a) no obvious change in root diameter (Additional file 1: 

https://www.hikvision.com/en/products/software/ivms-4200/?q=ivms4200%20series&position=1
https://www.hikvision.com/en/products/software/ivms-4200/?q=ivms4200%20series&position=1
https://www.hikvision.com/en/products/software/ivms-4200/?q=ivms4200%20series&position=1
https://www.3dflow.net/zephyr-doc/en/3DFMasquerade.html
https://www.3dflow.net/zephyr-doc/en/3DFMasquerade.html
https://www.3dflow.net/technology/documents/3df-zephyr-tutorials/tutorial-cleaning-point-clouds/
https://www.3dflow.net/technology/documents/3df-zephyr-tutorials/tutorial-cleaning-point-clouds/
https://www.3dflow.net/technology/documents/3df-zephyr-tutorials/tutorial-cleaning-point-clouds/
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Fig. S8B and C, (1)); (b) most individual roots could form 
a continuous root without holes (Additional file  1: Fig. 
S8C and D, (3) and (4)); and (c) there were fewest roots be 
merged into one (Additional file 1: Fig. S8B and C, (2)).

The maximum vertical depth and horizontal width of 
the point cloud of the whole root system were regarded 
as the root depth and root width, respectively (Fig. 5A). A 
quickhull algorithm [41] was used to build a convex hull 
and calculate the convex hull volume for the whole root 
system (Fig.  5B). The root volume was calculated based 
on the count of the actual number of “on” voxels in the 
3D root voxels, and the root surface area was calculated 
based on the distance around the boundary of the 3D 
root voxels (Fig. 5C). The 3D skeleton of root systems was 
extracted using the optimized homotopic thinning algo-
rithm [42], and the total root length was calculated based 
on the skeleton (Fig. 5D).

The different types of roots were automatically seg-
mented by using the developed horizontal slicing and 
iterative erosion and dilation algorithm (Fig. 8). The skel-
eton of the  main root/stem and lateral/nodal roots was 
also extracted using the optimized homotopic thinning 
algorithm, and the total length was calculated based on 
the skeleton (Fig.  9B, F). The average diameter of the 
main root/stem and lateral/nodal roots was calculated by 
the formula SA/π · TRL or 2 ·

√

V /(π · TRL) (V: volume; 
SA: surface area; TRL: total root length). The initial angle 
of lateral/nodal roots was extracted by calculating the 
vertical angle of the vector from the point 10–15 voxels 
away from the start point.

Plant materials and growth conditions
The experiment was performed at the farm of Jiangsu 
Academy of Agricultural Sciences, Nanjing, China 
(32.03° N, 118.87° E) in 2020–2021. Two rapeseed (Bras-
sica napus L.) cultivars “Ningyou 22” (NY22, conven-
tional) and “Ningza 1818” (NZ1818, hybrid), and one 
maize (Zea mays L.) cultivar “Sukeyu 1705” were used. 
The field management, such as fertilization, weeding, and 
pest control, followed the local cultivation practices. Two 
rapeseed cultivars at five growth stages (Additional file 2: 
Table S1) and one maize cultivar at the filling and mature 
stages were selected for root imaging and reconstruction. 
Three representative plants were used per species, per 
growth stage.

We imaged the maize root system as a whole, as well 
as those with the lateral roots of nodal roots removed, 
respectively. The global root traits were extracted 
using the root systems imaged as a whole, while the 
local root traits were extracted using the imaged root 
systems with the lateral roots removed. For root trait 
validation, we used a scale to measure the depth of 

root systems. All roots of the same plants above were 
destructively sampled and scanned with a flatbed scan-
ner (Epson Perfection V800, Japan) at a resolution of 
600 DPI. A WinRHIZO Pro 2013 (Régent Instruments, 
Canada) image analysis system was used to analyze 
the scanned root images. The length and diameter of 
roots were calculated according to the method of Wu 
et  al. [43]. The root angle was measured manually 
using a protractor. The measured angle was the verti-
cal angle formed from the root base to a distance of 
3–5 cm away from the root base. Usually, we start with 
easy-to-measure roots and then cut them off to reduce 
interference with other root angle measurements. The 
measured roots were marked according to their posi-
tion on the stem or main root. All roots were oven-
dried for 30 min at 105 °C, then at 80 °C until reaching 
a stable weight. Dry weight was measured using a 
0.001-g electron balance.
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