
Mao et al. Plant Methods (2023) 19:18
https://doi.org/10.1186/s13007-023-00984-5

METHODOLOGY

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Plant Methods

A deep learning approach to track
Arabidopsis seedlings’ circumnutation
from time‑lapse videos
Yixiang Mao1*†, Hejian Liu1†, Yao Wang1 and Eric D. Brenner2 

Abstract 

Background  Circumnutation (Darwin et al., Sci Rep 10(1):1–13, 2000) is the side-to-side movement common among
growing plant appendages but the purpose of circumnutation is not always clear. Accurately tracking and quantifying
circumnutation can help researchers to better study its underlying purpose.

Results  In this paper, a deep learning-based model is proposed to track the circumnutating flowering apices in the
plant Arabidopsis thaliana from time-lapse videos. By utilizing U-Net to segment the apex, and combining it with the
model update mechanism, pre- and post- processing steps, the proposed model significantly improves the tracking
time and accuracy over other baseline tracking methods. Additionally, we evaluate the computational complexity of
the proposed model and further develop a method to accelerate the inference speed of the model. The fast algo-
rithm can track the apices in real-time on a computer without a dedicated GPU.

Conclusion  We demonstrate that the accuracy of tracking the flowering apices in the plant Arabidopsis thaliana can
be improved with our proposed deep learning-based model in terms of both the racking success rate and the track-
ing error. We also show that the improvement in the tracking accuracy is statistically significant. The time-lapse video
dataset of Arabidopsis is also provided which can be used for future studies on Arabidopsis in various takes.

Keywords  Circumnutation, Plant Movement Tracking, Machine Learning, Deep Learning

Introduction
Circumnutation [1] is a term used to describe the back
and forth—near elliptical movement of growing plant
appendages. Among its known functions, circumnutation
is utilized by plant tendrils to locate support for climb-
ing [2] and by plant-parasitic plants for locating prey [3];
but the purpose of circumnutation in most growing plant
appendages is still a mystery [4]. Accurately tracking the

circumnutation movement over time could be used for
comparative analysis during different conditions among
and between plant species [1].

Time-lapse videos are an important instrument to char-
acterize plant behaviors including giving a more com-
plete view of circumnutation [5–7]. High-quality images
of plant growth and movement can be made at high
spatial resolution and low cost by most modern smart-
phones, which is useful for both laboratory research and
classroom activities [6, 8, 9]. We have recently devel-
oped Plant Tracer, a software that not only tracks, but
also quantifies certain parameters of plant movement
including speed, distance, and angle of stem curvature
[6]. Plant Tracer is available for both the cell phone and
the computer platform that can be downloaded from
the website (https://​www.​plant​tracer.​com). Plant Tracer

†Yixiang Mao and Hejian Liu are equal contributors

*Correspondence:
Yixiang Mao
yixiang.mao@nyu.edu
1 Department of Electrical and Computer Engineering, New York
University, Brooklyn, NY, USA
2 Biology Department, Pace University, New York, NY, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13007-023-00984-5&domain=pdf
https://www.planttracer.com

Page 2 of 11Mao et al. Plant Methods (2023) 19:18

uses traditional tracking algorithms, i.e. block match-
ing algorithm and Kanade-Lucas-Tomasi (KLT) tracking
algorithm. However, these methods lack in robustness
on videos taken in a real world context and are not adap-
tive to scene variability [10]. Recent development in deep
learning has revolutionized automated image analysis
[11–14], which have shown the near-universal capability
to address almost any image processing challenges with
high accuracy [15–17]. Neural networks have also ben-
efited plant imaging [18–21], but have not been used for
circumnutation studying.

In this work, we create a dataset including the time-
lapse videos from the side-view and we develop a deep
learning framework to track the flowering stem apex
movement and growth. We also develop and publish an
executable program using our model, it can be down-
loaded from our webpage and does not require any
coding expertise to set up. The instruction is provided
at the end of the paper. We adopt the “U-net” architec-
ture to segment and track the flowering apices in the
plant Arabidopsis thaliana from time-lapse videos. The
program segments the plant apex in each frame using
a trained “U-net” segmentation model with a tempo-
ral consistency constraint. Furthermore, the algorithm
automatically identifies frames where the segmentation
result is inaccurate due to shape changes of the flowering
apex and updates the segmentation model using the most
recent frames. This segmentation-based tracking method
can correct itself if the tracking result of one frame is
wrong and is robust to shape changes in flowering apices.
Hence, a much longer tracking duration and accuracy
can be achieved using our algorithm.

The Related Work section summarizes the related
works on object segmentation in video processing, and
the previous works on tracking plant movement using
video processing technology. The Materials and Meth-
ods section introduces our time-lapse video dataset and
our deep learning approach for apex detection and track-
ing in detail. The Results section evaluates the perfor-
mance of the proposed tracking algorithm and compares
our proposed method with 2 widely used plant tracking
methods. This section also quantifies the impact of sev-
eral components of the proposed tracking algorithm.
The Discussion section describes the directions to fur-
ther improve the tracking accuracy and running speed of
the proposed tracking algorithm. Finally, the last section
concludes this work by listing our major contributions
and improvement.

Related work
Object segmentation is a critical component in many
applications, including medical imaging, visual percep-
tion, scene understanding, augmented reality, object

detection, and image compression, among many other
video processing tasks [22–26]. A survey paper [27]
summarizes over 100 deep-learning based algorithms
for segmentation tasks, and many popular models use
the encoder-decoder architecture [28–30]. “U-net” is
one of them and was first introduced in 2015 by Ron-
neberger et al. for segmenting biological microscopy
images [31]. Its development in recent years has dem-
onstrated promising performance outside the micros-
copy image segmentation field [32–35]. However, it
has not been adopted to track such plant movement in
time-lapse videos.

Tracking seedlings’ movement has been investigated
previously. For example, Salma et al. [18] developed deep
learning methods to monitor seedlings but they only
considered top-view time-lapse videos, and their analy-
sis is designed to monitor the kinetics of early seedling
development prior to the emergence of the first true leaf.
However, it can be difficult to observe the stem growth
in length from the top view. A previous paper [6] uses
a block matching method [36] to track the plant (Arabi-
dopsis seedlings) apex from the side view in the time-
lapse video. A popular method for object tracking is
the Kanade-Lucas-Tomasi (KLT) tracker [37–39] which
detects the feature points inside the selected box and cal-
culates the displacement of those points between each
frame. This method however has not been adopted for
plant tracking in the literature. We compare the proposed
deep-learning-based method with the block matching
and KTL methods and demonstrate significant improve-
ment in tracking success and accuracy over these base-
line methods.

The block-based method and other traditional meth-
ods [40, 41] have several limitations [42]: they cannot
detect the apex so that users have to manually point to
the apex location; they cannot track the flowering apex
that changes its shape quickly; also the tracking error
accumulates over time and the methods tend to follow
the wrong result and cannot correct themselves once the
tracking fails in some earlier frames.

To overcome those limitations, we design a detection-
based tracking algorithm that adopts the “U-net” archi-
tecture to first segment and then track the flowering
apices in the plant Arabidopsis thaliana from time-lapse
videos. Our algorithm ensures that the detection error
does not accumulate over time, because the algorithm
re-detects the apex location in the next frame in case the
wrong result occurs in one frame. Also, a user does not
need to manually indicate the initial apex location since
the algorithm automatically detects it. However, the user
has an option to draw a box surrounding the apex of
interest in the first frame, which could be useful in plants
with multiple apices.

Page 3 of 11Mao et al. Plant Methods (2023) 19:18 	

Materials and methods
We first describe our setup to record the time-lapse vid-
eos of Arabidopsis seedlings and the time-lapse video
dataset. Then, we introduce our deep learning approach
for apex detection and tracking, including the core seg-
mentation model, relearning mechanism, and other pre-
and post-processing steps.

Video acquisition
The Arabidopsis seedlings were grown according to the
method of [5]. Examples of the plant video setup are
shown in Fig. 1 and have been previously explained in
[5]. It includes a solid color background (typically we use
black or purple office folders), a metric ruler (with white
lettering and increments set on a black background for
best contrast), and identification labels for different plant
genotypes and strains. The ruler is used to calibrate the
mapping from the pixel counts in the video to the true
distance; it is placed in the same focal plane as the plant
apices that will be tracked. Labels are placed in close
proximity to the plants so that the identity of the plant
strain/genotype can be clearly seen in the recordings. An
experiment to measure circumnutation on Arabidopsis

plant apices was performed. More details on the video
capturing setup are described in previous work [6]. For
videos with multiple plants in the recording, it was essen-
tial that plants are placed at a distance safe enough to
avoid possible object occlusion. The Lapse-it app [43]
(supported by both iOS and Android devices) is used to
create the time-lapse recordings. Typically for Arabidop-
sis inflorescences, Lapse-it is set to capture one image
every two minutes, and then Lapse-it is set to encode the
captured images into a time-lapse video at 20 frames per
second (fps). Circumnutation movements are recorded
for over ten hours to three days.

Dataset generation
We captured 15 videos and annotated the apex loca-
tion in all frames to generate our dataset. All videos
have the same resolution of 640× 480 pixels and have
18231 frames in total (corresponding to 607.7 h of
plant movement). We split those videos into training,
validation, and test datasets, including 10 videos (11056
frames), 2 videos (3471 frames), and 3 videos (3704
frames), respectively. The details of the training videos
are listed in Table 1, and the details of the validation

Fig. 1  Snapshots of some videos in our time-lapse video dataset of Arabidopsis

Table 1  The information of videos used for training

Video Name Train_1 Train_2 Train_3 Train_4 Train_5 Train_6 Train_7 Train_8 Train_9 Train_10

Frame number 1427 1778 920 1065 1048 491 1127 1070 1065 1065

Capture time (hour) 47.6 59.3 30.7 35.5 34.9 16.4 37.6 35.7 35.5 35.5

Background color Black Black Black Purple Purple Black Black Purple Purple Purple

Page 4 of 11Mao et al. Plant Methods (2023) 19:18

and test videos are in Table 2. Some snapshots of the
validation and test videos are shown in Fig. 1. To gener-
ate the ground truth apex location for our video data-
set, we manually annotate a box surrounding the target
apex in each frame. Then, a mask map is generated for
each frame and the mask is used as the ground truth of
the segmentation model. The mask map has a rectangle
area (33*33 pixels) corresponding to the annotated box;
all pixels inside the rectangle area have a value of 1, and
the pixels outside the rectangle area have a value of 0.
An example of a frame with its annotated ground truth
(mask map) is shown in Fig. 2.

In this work, we trained the proposed segmentation
model independently from other processes using the
training dataset. The validation dataset is used to exam-
ine the impact of the model’s hyper-parameters and
determine the best settings. Then, we report the per-
formance on the test dataset. The Arabidopsis seedling
dataset has been made public, including all videos and
the manually annotated apex coordinates. The dataset is
public and can be used for future studies on Arabidop-
sis in various takes, e.g., segmentation, recognition, and
tracking of Arabidopsis plants. The download link to the
dataset is provided at the end of the paper.

Proposed deep learning approach for apex detection
and tracking
The program processes each frame of the input time-
lapse video in 3 sequential steps with an additional
model update process when necessary. The input frame
has 640× 480 pixels in 3 channels (red, green, and blue),
as shown in Fig. 3a. We first crop the input frame to a
square centered at the apex position in the previous
frame. The cropped image becomes the input for the

Table 2  The information of validation and testing sequences

Video Name Val_1 Val_2 Test_1 Test_2 Test_3

Frame number 1043 2428 1127 1146 1431

Capture time (hour) 34.8 80.9 37.6 38.2 44.7

Background color purple black black black black

Scale (mm/pixel) 0.258 0.276 0.349 0.379 0.276

Fig. 2  Data generation: a the original image ( 640× 480 pixels), where the red box shows the position of the apex (manually annotated). b the
ground truth mask image, 1 for pixels inside the box, 0 otherwise, box size is 33*33

Fig. 3  Pipeline of the program: a input the previous tracked frame and the current frame. b the cropped image. c the probability map output by
the segmentation model. d located apex candidates after removing outliers. e the final output image with the tracked apex

Page 5 of 11Mao et al. Plant Methods (2023) 19:18 	

segmentation network, as shown in Fig. 3b. Then, the
segmentation network outputs a map to indicate the pos-
sibility that each point belongs to the apex, as shown in
Fig. 3c. Next, post-processing is applied to eliminate out-
liers. Additionally, when the algorithm suspects the seg-
mentation result of the current frame is grossly wrong,
the segmentation network will be updated using the last
segmented frame as the ground truth, we call this step
Model Update. The final output image with the tracked
apex is shown in Fig. 3e.

The segmentation network
In the following, we first describe the architecture of the
proposed segmentation network, and then present the
training strategy.

Network architecture We adopt a simplified version of
the U-net introduced by Ronneberger et al. in 2015 [31].
Figure 4 depicts the overall segmentation network archi-
tecture, each blue box corresponds to a multi-channel
feature map. The number of channels is denoted on top
of the blue box. The network takes the input of an image
in 3 color channels (red, green, blue), and outputs a sin-
gle-channel binary image by thresholding the predicted
probability map at the same spatial resolution as the
input. Each downsample operation (red arrows in Fig. 4)
cuts both the width and height of the feature map by half,
and the upsample is the reverse operation (green arrows).
The fourth layer is in the lowest resolution ( 80× 60 pix-
els for an input of 640× 480 pixels). We use a 3*3 kernel
size in all 2D convolution layers (black arrows in Fig. 4).
We use Rectified Linear Unit (ReLU) [44] as the activa-
tion function for all layers except the output layer, where
we use the sigmoid non-linearity to generate the output
in the range of 0 to 1.

Training the segmentation network The segmentation
network is trained separately from the other processes
in the pipeline (not an end-to-end training). We use the
stochastic gradient descent (SGD) [45] as the optimizer
with an initial learning rate of 0.01, and a batch size of
8 images. We choose these hyper-parameters based on
the convergence trend and the speed of training the first
3 epochs, each epoch includes 10k+ frames in the valida-
tion dataset.

We use a modified Soft Dice coefficient as the loss
function. The original Dice coefficient [46, 47] is modi-
fied so that it accurately quantifies the intersection of
union (IoU), a metric commonly used for assessing image
segmentation accuracy. We also apply Laplace smoothing
[48] by adding 1 at both numerator and denominator. The
final loss function for each training frame can be written
as

where P denotes the probability map (the output of the
segmentation network) and B denotes the ground truth
mask, pi and bi denote the value of P and B in pixel i.
Laplace smoothing is used to handle vanishing/exploding
gradients when P and B are both close to zero.

Post‑ processing
The segmentation network produces a probability map as
shown in Fig. 5. We first threshold the probability map so
that pixels with probability ≥ Tm are set to 1 (considered
as candidate apex pixels) and the remaining pixels are set
to 0. We set Tm = 0.75 to optimize the performance on
the validation dataset. To locate the center of the apex,
a naive approach is to simply take the mean coordinates

(1)

L = 1−
P ∩ B+ 1

P ∪ B+ 1
= 1−

∑

i pibi + 1
∑

i pi +
∑

i bi −
∑

i pibi + 1
,

Fig. 4  The architecture of the neural network for apex segmentation

Page 6 of 11Mao et al. Plant Methods (2023) 19:18

of the candidate apex pixels. However, there are two
major problems with this approach: multiple detec-
tions and color vanishing. First, the segmentation model
sometimes identifies multiple areas to be the possible
apex, as shown in Fig. 6b. Secondly, the detected high-
probability area sometimes is too large and the center is
far away from the actual apex, as shown in Fig. 6d. We
noticed that this problem often happens when the apex
is large and not monochrome. To solve those problems,
we perform several post-processing operations, including
search range limitation and outlier removal. The mean
coordinates of the remaining pixels are finally used as the
apex center.

Set the search range Recognizing that the plant move-
ment within one frame interval (2 min) is limited (less
than 20 pixels among all videos from our dataset), the
program crops the whole frame into a smaller area cover-
ing the detected apex in the previous frame as the seg-
mentation network input to enforce a temporal motion
constraint. (The segmentation model’s input for the first
frame is still the whole frame.) The area is a rectangle
with the size of 2R1 + 1 by 2R1 + 1 pixels centered at the
detected apex in the previous frame. This area limita-
tion helps in both eliminating the outliers and speeding
up the model inference speed. However, a too-small area
will reduce the model inference accuracy, since a smaller
local area cannot provide the global plant structure

information to the deep segmentation network. Based
on the experiment described in the results section below,
we set the default R1 = 200 for computers with a power-
ful GPU, and R1 = 50 for computers without a compat-
ible GPU. Note that R1 does not have to be chosen from
the default values; it can also be manually set to any value
by users in our executable program, and it should be
adjusted based on the actual video resolution and object
movement pattern when the model is applied to track
plant apices for other types of plants or videos of differ-
ent resolutions.

Remove the outliers Although the segmentation model
only searches for the apex within the search range as
mentioned before, the output probability map still occa-
sionally shows multiple high-probability clusters. We
first remove all candidate points with a distance of more
than R2 pixels from the previous apex center. For those
remaining points, the program then removes the can-
didate pixels which have a large distance to the median
of all candidate points. Specifically, the program first
determines the medians of horizontal and vertical coor-
dinates respectively of all candidate points, yielding x̃
and ỹ . Then for each remaining candidate points (x, y), if
|x − x̃| or |y− ỹ| is larger than a threshold R3 , the point is
recognized as an outlier and removed. We test the per-
formance of different settings on the training dataset and
set the default as R2 = 30 pixels, and R3 = 0.5 · R2 (or 15

Fig. 5  The output probability map and its binary map

Fig. 6  The challenging cases when using only the segmentation network without pre- and post- processing. a and b show examples of detecting
multiple objects. c and d show examples when the detected center is far away from the actual apex

Page 7 of 11Mao et al. Plant Methods (2023) 19:18 	

in default). Note that R2 can also be manually set to any
value, and it should be adjusted according to the moving
speed of the plants and the video resolution.

Model update
The pre-trained segmentation model may have difficulty
identifying objects that are significantly different from
the apices in the training dataset, e.g., an apex from a
different species than Arabidopsis. Additionally, some
time-lapse videos in our dataset were taken over a period
of days, the apex may change in morphology; such that
individual flowers may begin to bloom during this long
time period, or the lighting condition may change, which
may cause the apex to show different color intensity in
the video. To accommodate such appearance and color
changes, a mechanism called Model Update is developed
to update the parameters of the pre-trained segmentation
model automatically. Our tracking program also allows
the user to optionally specify the position of the apex in
the first frame to update the pre-trained model, which is
important when the program is used for a plant species
not included in the training stage.

In each frame, the algorithm generates an initial binary
segmentation map using all the previous steps. Then, the
algorithm examines the loss value between this initial
segmentation map and the segmentation model proba-
bilistic output using the loss function shown in Equation
(1). This value is denoted as suspicion. If suspicion > Ts ,
the segmentation model will be refined with the current
frame data only (i.e. using the raw image and the initial
segmentation map as the ground truth for this frame).
This process will repeat until suspicion < c · Ts . Once the
Model Update completes (with suspicion < c · Ts ), the
model adapts to the morphology of the apex in the cur-
rent frame, and this model will be used for subsequent
frames until the Model Update is triggered again. A too-
small c can make the model overfit with the feature of
this frame and trigger the Model Update unnecessarily.
We choose c = 0.6 and Ts = 0.95 in our system, which
provide the best results on our validation dataset. Note
that the updated model parameters would only last for
one tracking task (one video). When the algorithm pro-
cesses a new video, the segmentation model will be reset
to the pre-trained one.

The pre-trained model parameters should be mostly
preserved during the relearning, so the segmentation
network still maintains good competence in processing
general cases (the apexes seen in the training dataset)
after relearning in a specific frame. Therefore, the gradi-
ent descent is modified in the relearning state to achieve
this goal. At the beginning of a tracking task, the pre-
trained parameters are recorded as WT . In each iteration
of the relearning, the parameters are updated as:

where W denotes the trainable parameters, k denotes
the iteration time, ηk denotes the learning rate, and L(·)
denotes the loss function. α ∈ (0, 1) is a weight balancing
the pre-trained parameters and the relearned parameters.
After the model parameters are updated for the current
frame, they are used as new WT , which will be used in the
next possible relearning in the same video. Note that WT
is reset when starting a new video.

In addition to the suspicion condition to end the
relearning, we also set a time threshold to prevent
the suspicion from taking too much time to reach
suspicion < c · Ts . Specifically, if the time of relearning
exceeds the time threshold, the program terminates the
relearning and moves on to process the next frame. In
our program, we set this time threshold to 3 s.

Results
In this section, we first evaluate the performance of the
proposed tracking algorithm. Then, we compare it with
the widely used Kanade–Lucas–Tomasi (KLT) tracker
[37–39] and a modified block matching (BM) tracker
used in our previous paper [6]. Next, we quantify the
impact of several components of the proposed tracking
algorithm (including relearning and thresholds in the
post-processing steps) to better understand the trade-
off between tracking performance vs. computation time
afforded by these components.

Tracking performance on real time‑lapse videos
We evaluate the performance of our program using the
metrics of the tracked time and the tracking error. The
tracked time is the number of frames the algorithms
can track until any “fatal” failure happens. A fatal failure
means the program is unable to correct itself and locate
the apex in future frames. We report the percentage of
frames where the algorithm can successfully track its tar-
get apex, which is called this the Tracking Success Rate
(TSR). We further calculate the error (pixel distance)
between the ground truth coordinate (xi, yi) of the apex
center and the predicted coordinate (x̂i, ŷi) in each frame
before the tracking failure. We use the Euclidean distance
defined as ǫi =

√

(xi − x̂i)2 + (yi − ŷi)2 , and determine
the mean and standard deviation of this error over all
successfully tracked frames.

We compare the tracking performance of our algo-
rithm with the two baselines over validation and test
videos. The first baseline (the KLT tracker) detects the
feature points inside the selected box and calculates
the displacement of those points between each frame.
We use the publicly available implementation of KLT
tracker [49] for this baseline. The second baseline is a

(2)Wk+1 = (1− α)WT + α(Wk − ηk∇L(Wk)),

Page 8 of 11Mao et al. Plant Methods (2023) 19:18

modified block matching (BM) tracker used in our pre-
vious paper [6]. Table 3 reports the TSR, and the mean
and the standard deviation of the errors for the valida-
tion and testing videos.

As shown in Table 3, while our proposed track-
ing algorithm can track all videos to the end, the KLT
tracker fails to do so on Val_2 and Test_2. For all videos
that the KLT can successfully track, the errors of our
proposed algorithm are consistently smaller than the
errors of the KLT tracker. Meanwhile, the BM tracker
only can track the apex in Test_1 to the end, and results
in larger mean errors than the proposed algorithm and
the KLT tracker for all the videos that it can track at
least partially. Note when a tracker fails before the end
of a video, the reported mean and standard deviation
of its error may not be comparable with other method,
because the reported numbers are obtained over differ-
ent time periods.

To investigate if the reduction in the tracking errors
by the proposed algorithm is statistically significant
compared to the baselines, we conduct the Wilcoxon
signed-rank test [50] on the error difference between
the proposed algorithm and each baseline. The differ-
ences in tracking errors are determined before either
the proposed method or the baseline method fails for
each video. Then, we perform the Wilcoxon test on the
error differences to determine the p-value, which is
the chance that the difference comes from a distribu-
tion whose median is zero. Table 4 reports the p-values
from the test. All the p-values are substantially lower
than 0.05, demonstrating that the proposed algorithm
is statistically significantly better over both baselines.

Evaluation of different processes in the framework
We quantify and analyze the impact of each compo-
nent of the proposed tracking algorithm, including the
adjustable search range and the Model Update.

Impact of the searching range R1
It is critical for the segmentation network to achieve real-
time inference on users’ personal computers or cell phones.
An effective way to speed up the inference is to crop the
completed video frame to a smaller image (we call it search
range) as the model input. In this case, the algorithm only
needs to process this cropped region of the whole frame
and the processing time can be significantly reduced
depending on the cropped image size. However, a smaller
cropped image may reduce the model inference accuracy
because it is difficult for the model to extract features from
an image that is much smaller than training images. In gen-
eral, a larger search range provides more accurate tracking
but the algorithm processing speed is slower.

We evaluate such trade-off between the inference
speed and accuracy over 3 different search ranges, e.g.,
101× 101 pixels, 201× 201 pixels, and 401× 401 pixels,
as shown in Table 5. The results are measured on a laptop
with Nvidia RTX 2080 Max-Q GPU. Compared to the
smaller search ranges, the search range with 401× 401
pixels achieves a significantly lower tracking error
(around 50% lower on most videos), because such a large
search range is close to the original frame size, and the
model is trained to extract features on such scale. How-
ever, the model needs more time to process the input
with such a large search range. In particular, the model
can process the 401× 401 input at around 30 frames per
second (fps) using the RTX 2080 Max-Q GPU, while it
can process the 201× 201 input at around 73fps or the
101× 101 input at around 90fps.

Table 3  The performance of the proposed model, the KLT tracker, and the BM tracker. (TSR: Tracking Success Rate)

The bold values indicate that the corresponding algorithm (or model setting) performs the best in the comparison

Video Proposed method KLT tracker BM tracker

TSR Error mean (mm) Error std (mm) TSR Error mean (mm) Error std (mm) TSR Error mean (mm) Error std (mm)

Val_1 100% 0.32 0.19 100% 1.16 0.28 0.0% N/A N/A

Val_2 100% 1.52 0.72 34.8% 1.84 0.80 70.4% 4.17 0.75

Test_1 100% 0.91 0.48 100% 1.13 0.65 100% 2.46 0.64

Test_2 100% 0.94 0.53 98.0% 1.01 0.44 42.5% 1.04 0.41

Test_3 100% 1.43 0.52 100% 2.10 0.93 25.2% 3.19 0.59

Average 100% 1.02 0.49 86.6% 1.45 0.62 47.6% 2.72 0.60

Table 4  The p-value of the Wilcoxon signed-rank test on the
tracking error difference

p-value Val_1 Val_2 Test_1 Test_2 Test_3

ǫProposed − ǫKLT 7.74e-173 1.45e-06 6.79e-38 5.32e-09 8.52e-82

ǫProposed − ǫBM N/A 2.57e-191 2.69e-181 2.38e-19 3.01e-37

Page 9 of 11Mao et al. Plant Methods (2023) 19:18 	

We also measure the inference speed only using
the CPU on our laptop (Intel i9-10980HK). On aver-
age, our program runs at 33fps when the search range
is 101× 101 , while running at 16fps and 6fps when the
search range is set to 201× 201 and 401× 401 , respec-
tively. In order to reach real-time inference (20fps), our
executable program benchmarks the speed of the com-
puter and sets the search range accordingly. For instance,
once the executable program is opened, it runs the infer-
ence on an example image with the 401× 401 resolution.
If the inference takes less than T1 , our program chooses
to use the 401× 401 search range to ensure a better
tracking result; if the inference takes more than T2 sec-
ond, our program adapts to the 101× 101 search range
to reduce the inference time and consequently reduce
the user’s waiting time; if the inference time on example
images takes the time in between T1 and T2 , it chooses
to use the 201× 201 search range. Based on our experi-
ment, we set T1 = 0.04 second and T1 = 0.17 second.

Impact of Model Update
To verify the impact and performance of the Model
Update mechanism, we also evaluate our model when the
Model Update is disabled. Relearning is designed to work

especially in situations when the tracking accuracy is low,
so we compared the proposed algorithm and the algo-
rithm with disabled Model Update when the search range
is 101× 101 pixels, as shown in Table 6. We discover
that even with the relearning enabled, Model Update is
triggered rarely, typically 1 to 3 times through an entire
video sequence. Therefore, it does not really have any
consistent impact on the inference time. Compared to
the algorithm with relearning disabled, the algorithm
with relearning enabled always achieves better results.
Specifically, for the videos (Val_1, Test_2), the relearn-
ing-disabled model fails to track to the end, while the
relearning-enabled model can always track for a longer
time before any failure. For other videos, our proposed
relearning-enabled model always achieves lower track-
ing error. Thus, we confirm that our proposed relearning
mechanism is effective.

Discussion
Compared to baseline algorithms, the proposed algo-
rithm significantly improves both the tracking suc-
cess ratio and the tracking accuracy on our dataset,
which should correspond to substantial improvement
in the overall capability of tracking plant apices. We

Table 5  Effect of the search range on the tracking error and computation speed

The speed is measured on a Nvidia RTX 2080 Max-Q laptop GPU. When running on an Intel i9-10980HK CPU, on average our program runs at 33fps, 16fps, and 6fps
when the search range is set to 101× 101 , 201× 201 , and 401× 401 , respectively.

The bold values indicate that the corresponding algorithm (or model setting) performs the best in the comparison

Search range Video 101× 101 201× 201 401× 401

Error (mm) Speed (fps) Error (mm) Speed (fps) Error (mm) Speed (fps)

Val_1 1.82 93.6 2.54 73.9 0.32 31.5

Val_2 1.45 94.1 1.40 73.7 1.52 30.5

Test_1 2.53 91.3 1.68 73.3 0.91 30.5

Test_2 2.82 89.4 1.51 72.6 0.94 31.7

Test_3 1.37 92.2 1.85 74.7 1.43 31.7

Average 2.00 92.1 1.79 73.6 1.02 31.2

Table 6  Effect of the relearning mechanism

Results obtained with a search range of 101× 101 on the GPU. RT (relearning times) indicates the number of times that relearning is triggered within the entire
video

The bold values indicate that the corresponding algorithm (or model setting) performs the best in the comparison

Video Relearning disabled Proposed, relearning enabled

TSR Error (mm) Speed (fps) RT TSR Error (mm) Speed (fps)

Val_1 9.2% N/A N/A 1 100% 1.82 93.6

Val_2 100% 3.78 92.2 1 100% 1.45 94.1
Test_1 100% 2.79 91.9 1 100% 2.53 91.3

Test_2 87.6% N/A N/A 1 100% 2.82 91.4

Test_3 100% 3.44 92.4 1 100% 1.37 92.2

Average 79.4% N/A N/A 1 100% N/A N/A

Page 10 of 11Mao et al. Plant Methods (2023) 19:18

have made public our annotated video dataset, which
includes 15 videos containing a total of 18231 frames,
with manually annotated apex coordinates. The down-
load link to the dataset is provided at the end of the
paper. This dataset can be used in future studies on
Arabidopsis seedlings and can be used for training
more advanced neural networks for apex detection or
tracking.

There are several directions we are working on to fur-
ther improve the tracking accuracy and running speed of
the tracking algorithm. To remove the interference from
the background objects in the video, we can add a “color
filter” on the input of the segmentation network to only
keep areas with white and green colors, with preliminary
attempts showing encouraging results. Additionally, the
current program needs to reduce the size of the search
range to achieve a tolerable real-time running speed on
devices without powerful GPUs, which may lead to lower
tracking accuracy. Another potential solution to further
reduce the inference time without sacrificing the accu-
racy is to periodically run the proposed tracking algo-
rithm once every N frames, and apply a faster tracker
(e.g., KLT) on the remaining frames.

Conclusion
In this work, we proposed and developed an algorithm
to track the movement of Arabidopsis seedling apices in
time-lapse videos. We demonstrate that both the success
ratio and the accuracy of tracking the flowering apices in
the plant Arabidopsis thaliana are substantially improved
with our proposed deep learning-based model, and the
improvement is statistically significant. By utilizing the
deep-learning based object segmentation network that
detects the apex location in each frame, together with
the proposed relearning mechanism and several pre- and
post-processing steps, our algorithm can achieve a 100%
tracking success ratio with the smallest tracking error on
our dataset, even under challenging scenarios. By intro-
ducing Model Update, the system can track the changing
apex or the apex unseen in the training dataset, without
retraining the deep neural network from scratch. Mean-
while, we contribute the circumnutation video dataset
of Arabidopsis, which can be used for future studies on
Arabidopsis in various tasks.

Author contributions
HL and YM contributed equally to this work. Yixiang coordinated between
2 departments and helped Hejian to familiarize the project and data. Hejian
mainly did the experiments with help from Yixiang. Hejian and Yixiang wrote
the main manuscript text and prepared figures. Prof. YW and Prof. EB proposed
the research topic and supervised the development of the algorithm. All
authors reviewed and revised the manuscript.

Funding
We would like to thank the National Science Foundation for support from IUSE
Grant #1611885.

Availability of data and materials
Our dataset of circumnutation of Arabidopsis seedlings is public, which
includes 15 time-lapse videos containing a total of 18231 frames (correspond-
ing to 607.7 h of circumnutation recording) with manually annotated apex
coordinates. All videos have the same resolution of 640× 480 pixels. Those
videos are separated into training, validation, and test datasets, including 10
videos (11056 frames), 2 videos (3471 frames), and 3 videos (3704 frames),
respectively. The details of the training videos are listed in Table 1, the details
of validation and test videos are in Table 3. Some snapshots of the validation
and test videos are shown in Fig. 1. This dataset can be used in future studies
on Arabidopsis seedlings and can be used for training more advanced neural
networks for apex detection or tracking. It can be downloaded from: https://​
drive.​google.​com/​drive/​folde​rs/1_​ieEnz​IJXS5​DWnIe​E34GrQ-​Mz2V0​e5Ns?​usp=​
shari​ng. We develop and publish an executable program using our model.
Note that the purpose of this executable program is only to demonstrate the
proposed tracking algorithm, and it was only tested on the circumnutation
videos provided in the dataset. The current program only works on videos of
spatial resolution of 640× 480 pixels. To apply the program on videos of other
resolutions, the videos should be first resized to 640× 480 . The program can
be downloaded from: https://​drive.​google.​com/​drive/​folde​rs/​1A5bh​M96IU_​
aMGPbF_​0lj1C​l9_​JS4Pk​C8?​usp=​shari​ng

Declarations

Ethical Approval
Not applicable.

Competing interests
The authors declared that they have no competing interests.

Received: 12 July 2022 Accepted: 17 January 2023

References
	1.	 Darwin C, Darwin F, et al. The power of movement in plants; 1883.
	2.	 Raja V, Silva PL, Holghoomi R, Calvo P. The dynamics of plant nutation. Sci

Rep. 2020;10(1):1–13.
	3.	 Runyon JB, Mescher MC, De Moraes CM. Volatile chemical cues

guide host location and host selection by parasitic plants. Science.
2006;313(5795):1964–7.

	4.	 Stolarz M. Circumnutation as a visible plant action and reaction: physi-
ological, cellular and molecular basis for circumnutations. Plant Signal
Behav. 2009;4(5):380–7.

	5.	 Brenner ED. Smartphones for teaching plant movement. Am Biol Teach.
2017;79(9):740–5.

	6.	 Guercio AM, Mao Y, Carvalho VN, Zhang J, Li C, Ren Z, Zhao W, Wang Y,
Brenner ED. Plant tracer: a program to track and quantify plant move-
ment from cellphone captured time-lapse movies. Bioscene: J Coll Biol
Teach. 2019;45(3):14–21.

	7.	 Stolarz M, Żuk M, Król E, Dziubińska H. Circumnutation tracker: novel soft-
ware for investigation of circumnutation. Plant Methods. 2014;10(1):1–9.

	8.	 Das Choudhury S, Samal A, Awada T. Leveraging image analysis for high-
throughput plant phenotyping. Front Plant Sci. 2019;10:508.

	9.	 Minervini M, Giuffrida MV, Perata P, Tsaftaris SA. Phenotiki: an open
software and hardware platform for affordable and easy image-based
phenotyping of rosette-shaped plants. Plant J. 2017;90(1):204–16.

	10.	 Minervini M, Scharr H, Tsaftaris SA. Image analysis: the new bottleneck
in plant phenotyping [applications corner]. IEEE Signal Process Mag.
2015;32(4):126–31.

	11.	 Qi X, Zhang L, Chen Y, Pi Y, Chen Y, Lv Q, Yi Z. Automated diagnosis of
breast ultrasonography images using deep neural networks. Med Image
Anal. 2019;52:185–98.

https://drive.google.com/drive/folders/1_ieEnzIJXS5DWnIeE34GrQ-Mz2V0e5Ns?usp=sharing
https://drive.google.com/drive/folders/1_ieEnzIJXS5DWnIeE34GrQ-Mz2V0e5Ns?usp=sharing
https://drive.google.com/drive/folders/1_ieEnzIJXS5DWnIeE34GrQ-Mz2V0e5Ns?usp=sharing
https://drive.google.com/drive/folders/1A5bhM96IU_aMGPbF_0lj1Cl9_JS4PkC8?usp=sharing
https://drive.google.com/drive/folders/1A5bhM96IU_aMGPbF_0lj1Cl9_JS4PkC8?usp=sharing

Page 11 of 11Mao et al. Plant Methods (2023) 19:18 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	12.	 Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Acharya UR. Auto-
mated detection of Covid-19 cases using deep neural networks with
x-ray images. Comput Biol Med. 2020;121:103792.

	13.	 Lu L, Zheng Y, Carneiro G, Yang L. Deep learning and convolutional neural
networks for medical image computing. Adv Comput Vis Pattern Recog-
nit. 2017;10:978–3.

	14.	 Kalake L, Wan W, Hou L. Analysis based on recent deep learning
approaches applied in real-time multi-object tracking: a review. IEEE
Access. 2021;9:32650–71.

	15.	 Yang J, Ge H, Yang J, Tong Y, Su S. Online multi-object tracking using
multi-function integration and tracking simulation training. Appl Intell.
2022;52(2):1268–88.

	16.	 Pouyanfar S, Sadiq S, Yan Y, Tian H, Tao Y, Reyes MP, Shyu M-L, Chen S-C,
Iyengar S. A survey on deep learning: algorithms, techniques, and appli-
cations. ACM Comput Surv (CSUR). 2018;51(5):1–36.

	17.	 Ciaparrone G, Sánchez FL, Tabik S, Troiano L, Tagliaferri R, Herrera F. Deep
learning in video multi-object tracking: a survey. Neurocomputing.
2020;381:61–88.

	18.	 Samiei S, Rasti P, Vu JL, Buitink J, Rousseau D. Deep learning-based detec-
tion of seedling development. Plant Methods. 2020;16(1):1–11.

	19.	 Triki A, Bouaziz B, Mahdi W. A deep learning-based approach for detect-
ing plant organs from digitized herbarium specimen images. Eco Inform.
2022;69:101590.

	20.	 Jiang Y, Li C, Xu R, Sun S, Robertson JS, Paterson AH. Deepflower: a deep
learning-based approach to characterize flowering patterns of cotton
plants in the field. Plant Methods. 2020;16(1):1–17.

	21.	 Liu Z, Wang J, Tian Y, Dai S. Deep learning for image-based large-flowered
chrysanthemum cultivar recognition. Plant Methods. 2019;15(1):1–11.

	22.	 Mahajan S, Pandit AK. Image segmentation and optimization techniques:
a short overview. Medicon Eng Themes. 2022;2(2):47–9.

	23.	 Wang G, Li W, Zuluaga MA, Pratt R, Patel PA, Aertsen M, Doel T, David AL,
Deprest J, Ourselin S, et al. Interactive medical image segmentation using
deep learning with image-specific fine tuning. IEEE Trans Med Imaging.
2018;37(7):1562–73.

	24.	 Mittal M, Arora M, Pandey T, Goyal LM. Image segmentation using deep
learning techniques in medical images. In: Advancement of machine
intelligence in interactive medical image analysis. Springer; 2020. p.
41–63.

	25.	 Skourt BA, El Hassani A, Majda A. Lung CT image segmentation using
deep neural networks. Proc Comput Sci. 2018;127:109–13.

	26.	 Guo Y, Liu Y, Georgiou T, Lew MS. A review of semantic segmentation
using deep neural networks. Int J Multimed Inf Retr. 2018;7(2):87–93.

	27.	 Minaee S, Boykov YY, Porikli F, Plaza AJ, Kehtarnavaz N, Terzopoulos D.
Image segmentation using deep learning: a survey. IEEE Trans Pattern
Anal Mach Intell. 2021.

	28.	 Noh H, Hong S, Han B. Learning deconvolution network for semantic
segmentation. In: Proceedings of the IEEE international conference on
computer vision; 2015. p. 1520–1528

	29.	 Yuan Y, Chen X, Wang J. Object-contextual representations for semantic
segmentation; 2019. arXiv preprint arXiv:​1909.​11065

	30.	 Fu J, Liu J, Wang Y, Zhou J, Wang C, Lu H. Stacked deconvolutional net-
work for semantic segmentation. IEEE Trans Image Process 2019.

	31.	 Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for
biomedical image segmentation. In: International conference on medical
image computing and computer-assisted intervention, Springer; 2015. p.
234–241

	32.	 Punn NS, Agarwal S. Modality specific u-net variants for biomedical
image segmentation: a survey. Artif Intell Rev 2022;1–45.

	33.	 Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. Unet++: A nested u-net
architecture for medical image segmentation. In: Deep learning in medi-
cal image analysis and multimodal learning for clinical decision support,
Springer; 2018. p. 3–11.

	34.	 Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3d u-net:
learning dense volumetric segmentation from sparse annotation. In:
International conference on medical image computing and computer-
assisted intervention, Springer; 2016. p. 424–432.

	35.	 Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K,
McDonagh S, Hammerla NY, Kainz B, et al. Attention u-net: learning
where to look for the pancreas; 2018. arXiv preprint arXiv:​1804.​03999

	36.	 Lu J, Liou ML. A simple and efficient search algorithm for block-
matching motion estimation. IEEE Trans Circuits Syst Video Technol.
1997;7(2):429–33.

	37.	 Lucas BD, Kanade T, et al. An iterative image registration technique with
an application to stereo vision. British Columbia: Vancouver; 1981.

	38.	 Tomasi C, Kanade T. Detection and tracking of point. Technical report,
features. Technical Report CMU-CS-91-132, Carnegie, Mellon University;
1991

	39.	 Shi J, et al. Good features to track. In: 1994 Proceedings of IEEE confer-
ence on computer vision and pattern recognition, IEEE; 1994. p. 593–600.

	40.	 Gyaourova A, Kamath C, Cheung S-C. Block matching for object tracking.
Technical report, Lawrence Livermore National Lab., Livermore, CA; 2003

	41.	 Hariharakrishnan K, Schonfeld D. Fast object tracking using adaptive
block matching. IEEE Trans Multimed. 2005;7(5):853–9.

	42.	 Soleimanitaleb Z, Keyvanrad MA. Single object tracking: a survey of
methods, datasets, and evaluation metrics; 2022. arXiv preprint arXiv:​
2201.​13066

	43.	 Lapse it home time lapse for mobile. http://​www.​lapse​it.​com/. [Online]
	44.	 Nair V, Hinton GE. Rectified linear units improve restricted boltzmann

machines. In: ICML; 2010.
	45.	 Bottou L. Online learning and stochastic approximations. On-line Learn

Neural Netw. 1998;17(9):142.
	46.	 Dice LR. Measures of the amount of ecologic association between spe-

cies. Ecology. 1945;26(3):297–302.
	47.	 Milletari F, Navab N, Ahmadi S. V-net: Fully convolutional neural networks

for volumetric medical image segmentation. In: 2016 fourth international
conference on 3D vision (3DV); 2016. p. 565–571.

	48.	 Jurafsky D, Martin JG. Laplace smoothing. Speech and language process-
ing. 2nd ed. Upper Saddle River, NJ: Prentice-Hall, Inc.; 2009. p. 98–9.

	49.	 Track points in video using Kanade-Lucas-Tomasi (KLT) algorithm. https://​
www.​mathw​orks.​com/​help/​vision/​ref/​vision.​point​track​er-​system-​object.​
html/. [Online]

	50.	 Wilcoxon F. Individual comparisons by ranking methods. In: Break-
throughs in statistics, Springer; 1992. p. 196–202.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1909.11065
http://arxiv.org/abs/1804.03999
http://arxiv.org/abs/2201.13066
http://arxiv.org/abs/2201.13066
http://www.lapseit.com/
https://www.mathworks.com/help/vision/ref/vision.pointtracker-system-object.html/
https://www.mathworks.com/help/vision/ref/vision.pointtracker-system-object.html/
https://www.mathworks.com/help/vision/ref/vision.pointtracker-system-object.html/

	A deep learning approach to track Arabidopsis seedlings’ circumnutation from time-lapse videos
	Abstract
	Background
	Results
	Conclusion

	Introduction
	Related work
	Materials and methods
	Video acquisition
	Dataset generation
	Proposed deep learning approach for apex detection and tracking
	The segmentation network
	Post- processing
	Model update

	Results
	Tracking performance on real time-lapse videos
	Evaluation of different processes in the framework
	Impact of the searching range
	Impact of Model Update

	Discussion
	Conclusion
	References

