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Abstract 

This study presents a methodology for a high-throughput digitization and quantification process of plant cell 
walls characterization, including the automated development of two-dimensional finite element models. Custom 
algorithms based on machine learning can also analyze the cellular microstructure for phenotypes such as cell 
size, cell wall curvature, and cell wall orientation. To demonstrate the utility of these models, a series of compound 
microscope images of both herbaceous and woody representatives were observed and processed. In addition, 
parametric analyses were performed on the resulting finite element models. Sensitivity analyses of the structural 
stiffness of the resulting tissue based on the cell wall elastic modulus and the cell wall thickness; demonstrated that 
the cell wall thickness has a three-fold larger impact of tissue stiffness than cell wall elastic modulus.

Introduction
Stalk lodging is a known problem affecting the agriculture 
industry and results in billions of dollars every year in lost 
yield [1, 2]. Stalk lodging occurs when externally applied 
forces exceed the maximum load that the stalks are able to 
withstand. The mechanical failure of plant stalks is a multi-
scale phenomena that starts at the cellular level, and propa-
gates out to the tissue, organ, and ultimately the whole plant 
scale [3]. It is thus important to understand and quantify the 
stresses induced in cell walls during stalk bending. It is like-
wise important to understand and quantify microstructural 
phenotypes that directly affect the mechanical response of 
plant tissues. Development of mechanistic and first principle 

models can be used to achieve these objectives by simulat-
ing the cellular environment and the forces it experiences 
[4]. In particular, Finite Element Models (FEMs), which are 
a powerful tool used in engineering analyses, can be utilized 
to create physically realistic digital environments, in which 
cellular structures can be tested in silico. Such models have 
previously been developed at the plant [5], organ [6, 7], and 
tissue level previously [8]. However, the creation of cellu-
lar level models requires digitization of cell images is tradi-
tionally done through time-consuming and fairly expensive 
methods [6, 9, 10]. The purpose of this study is therefore to 
present a relatively inexpensive method for high-throughput 
digitization and quantification of plant cells that can be used 
to create two-dimensional FEMs. These FEMs can in turn 
be used to analyze and correlate mechanical stresses in cel-
lular structures with that of cell wall morphology and integ-
rity. Further, this tool will allow investigation of the effects of 
cellular organization and morphology on mechanical tissue 
properties.

Current methods of cell imaging include mass spec-
trometry, fluorescence imaging, vibrational microspec-
trometry, and x-ray computed microtomography [11]. 
All of these methods utilize intense sample preparation 
and highly specialized equipment. Mass spectrometry is 
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a very common and effective cell imaging technique but 
requires strict sample preparation control. Along with 
this, it has been documented that the imaging process is 
far from routine, and the specimen preparation is sam-
ple-dependent [12]. These challenges make it difficult to 
streamline the mass spectrometry process. Another method 
used is fluorescence imaging. This technique requires an 
intense sample preparation process that involves drying 
samples for 24  h and carefully choosing mounting media 
as it affects the fluorescence. This method is also frequently 
used on cross sections (slices of the stem) as well as particles 
(ground into a powder). In order for clear results, the mount-
ing media and preparation technique must be kept the same 
for both [13]. This adds complexity to the imaging process 
and increases the overall time it takes to obtain the images. 
X-ray Microtomography and Raman vibrational microspec-
troscopy are other methods also used for cell imaging. They 
both require expensive specialized equipment to obtain 
the images. Documentation for Raman microspectroscopy 
shows that samples are prepared by being freeze dried, cut 
with a vibratome, and soaked in acetone. Along with this, 
microscope calibration is also involved [14]. Microtomog-
raphy involves soaking the samples overnight, cutting with 
a vibratome, and staining the samples with precise chemical 
proportions [15]. Development of a more economical imag-
ing and digitization methodology would enable numerous 
research labs to develop FEMs of plants and begin to investi-
gate several phenomena in the realm of plant biomechanics.

Box 1 Definitions

Methods

To test the robustness of the digitization and 
quantification processes, samples were taken from 
various plants, Zea mays (maize), Arabidopsis 
thaliana, Mussatia hyacinthine, Arrabidacea verugosa, 
and submitted to several sectioning methodologies 
presented in the Discussion section [24]. For this study, 
the herbaceous representatives were manually stressed 
while the woody samples were naturally stressed. To 
bound the experiment, the primary specimens used in 
this study were maize specimens that were sectioned 
and stained as described in [6]. These were chosen 
to represent a “worst-case scenario”, as it is a high-
throughput but relatively crude cross-sectioning and 
staining procedure.

Plant materials
Sample acquisition, selection and preparation for microscopy
Zea mays  Experimental stalks were collected from 
border rows within a larger experiment located on the 
University of Kentucky Spindletop Research Farm. Seed 
was sourced from a single bag of Pioneer P1464AML (mid-
season, 114 days to mature), hand planted on 05/14/2021 
and fully mature stalks were harvested around 09/09/2021, 
approximately 118 days after planting. Immediately before 
planting, the field was rototilled and a precision planter 
was used to pre-cut 2-inch deep furrows with 30-inch 
row-to-row spacing. Planting density was set to 3 seeds/
ft within border rows or approximately 4700 plants/acre. 
Weeds were controlled with a single 2.5 qt/acre treatment 
of Acuron supplemented with 150  lb/acre of nitrogen 
applied on 06/01/2021. After herbicidal activity wore off, 
weeds were controlled manually with hoeing as needed; 
neither supplemental irrigation nor pesticide treatments 
were required during the growing season. During stalk 
collection, individuals were cut from the ground at their 
base using garden shears and at the internode above the 
primary ear bearing node. All leaves, and leaf sheaths were 
removed from individual stalks. Stalks were spread in a 
single layer on wire rack benchtops in a greenhouse set to 
36 °C w/adequate air circulation to deter mold growth and 
allowed to dry for one month. After drying, stalks were 
cut into subsections of approximately 3 internodes before 
shipment to Fairleigh Dickinson University, where they 
were stored at standard office temperature and humidity.

The samples were sectioned using a 110  V, 6 in. trim 
saw with a thin-notched diamond saw blade. The samples 
were cut in such a way that they maintained structural 
rigidity, in that they were able to be gently handled with-
out damaging the specimen. They were also cut to be thin 
in order to allow light through to enhance the images 

WEKA Waikato Environment for Knowledge 
Analysis [16, 17]

AI Artificial Intelligence; any system that 
perceives its environment and takes 
actions that maximize its chance of 
achieving its goals [18]

FEM Finite Element Method; general numeri-
cal method for solving partial differential 
equations in two or three space vari-
ables [19]

ML Machine Learning; computer algorithms 
that can improve automatically through 
experience and by the use of data [20]

GUI Graphical User Interface; user inter-
face that allows users to interact with 
electronic devices through graphical 
icons [21]

Micro-CT (μCT) Scan Microtomography; X-rays to create 
cross-sections of a physical object that 
can be used to recreate a virtual model 
[22]

Euclidean Distance Map 
(EDM)

indicates, for each pixel in the objects of 
the originally binary picture, the short-
est distance to the nearest pixel in the 
background (or the objects) [23]
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captured by the microscope. The samples were then 
stained with Safranin O for 15–30 s. They were then left 
to dry for 1–2 min before being placed under the micro-
scope for image capturing.

Arabidopsis thaliana  Samples were germinated and 
grown to 6 weeks of age in soil-less media under a 16:8 
light dark regime. Stem samples were obtained by plant 
sacrifice and sections prepared from the lowest internode 
on the mature stem. These samples were prepared by 
thinly slicing transverse sections of the stem with single 
edged razor blades (VWR, 76457-428 Radnor, PA, USA) 
supported against a firm background of a longitudinal 
halves carrot. Once sliced, they were counterstained 
within an aqueous toluidine blue solution for 30 s, washed 
in water and imaged.

Mussatia hyacinthine and Arrabidacea verugosa  Mature 
stem samples were collected on tropical forests of Central 
America. Samples were processed and prepared for 
microscopy following traditional protocols as described 
on [24].

Microscopy
The microscope used to view the samples was the 
AmScope LED Binocular Compound Microscope with 
a 5 megapixel USB3.0 camera and the software used to 
capture the images was AmScope 2021 v4.11. Samples 
were selected based on the clarity of the cells after 
viewing under the microscope. After cutting the samples, 
many cells tend to rip or tear causing them to overlap, 
which then causes problems during the image processing. 
To minimize this, samples were chosen to have clear cell 
boundaries and a high contrast between cell walls and 
inner cells. All samples were view at a magnification of 
100X. The images were then cropped using the same 
selection criteria (Fig. 1).

Image processing
The image is cropped (highlighted by a red rectangle) and 
processed using the functions in the open source image 
processing software, FIJI/ImageJ. The image is first con-
verted to an 8-bit image. It is then sharpened and the 
brightness and contrast were adjusted to a minimum 
value of approximately −  10 and a maximum value of 
127. These values vary slightly between each image, the 
goal of this step is to increase the contrast between the 
cell walls (dark) and the inner cell (bright) in preparation 
for the machine learning segmentation; the greater the 
contrast is, the more effective the segmentation will be. 
The despeckle function is used three times to clean the 
image and remove the background noise created from 
cutting the sample. After the image is clear with high 

contrast, WEKA (Waikato Environment for Knowledge 
Analysis) machine learning segmentation is conducted; 
see the Additional file  1 for more details. The inner 
cells and the cell walls are categorized into two different 
classes based on user selections.

This image was processed in a similar fashion as the 
previous image. It was cropped, converted to 8-bit, 
and was sharpened and despeckled according to user 
judgment. The difference in processing for this image 
was that the brightness and contrast was adjusted to 
a minimum value of 20 and a maximum value of 112. 
During the WEKA segmentation stage of the process-
ing, the FIJI magic wand tool was used for making some 
selections. The magic wand tool automatically high-
lights regions and boundaries on the image by click-
ing instead of requiring the user to manually outline 
the boundaries. The magic wand tool works well for 
cells that already have clear boundaries. The manual 
selections must still be made in conjunction with the 
magic wand tool in order to achieve the diversity that is 
required for a clear WEKA segmentation.

Manual thresholding: alternative to WEKA machine 
learning
As an alternative to the WEKA segmentation method, a 
more labor-intensive and semi-automated method was 
developed in which manual thresholding was utilized 
as opposed to the machine learning thresholding. The 
images were binarized and the threshold was adjusted. 
This first thresholding was done with large tolerances 
where all of the cells in the image were present while 
also limiting noise. The typical range for the first 
threshold was 0 for the minimum and around 175 for 

Fig. 1  Original microscope image of Zea mays stem 
cross-section (100 ×) with red square highlighting the cropped 
region
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the maximum. The remaining noise and irregularities 
leftover from the threshold were then eliminated 
using FIJIs freehand selection, delete, and invert tools. 
Limiting the noise and interference greatly improves 
the software’s segmentation capabilities. The image 
was then converted into a Euclidean Distance Map 
(EDM), in which the points of the image are assigned 
a value equal to the largest radial distance that fits 
into the binary point [25]. The next step was a second 
binarization and thresholding where the boundaries of 
the cells were maintained while also being made as thin 
as possible without the cells colliding into each other. 
This step is left to user judgment and may take several 
attempts to find the best thresholding values until a 
user intuition is developed (Figures 2, 3, 4, 5).

Voronoi splines
In order to define the cell wall boundaries, Voronoi 
splines were created using FIJI. A Voronoi diagram is a 
partitioning of a plane into regions [26]. The regions are 
formed about a given set of points called Ultimate Eroded 
Points (UEPs) that are generated by FIJI’s distance map 
function. The FIJI Voronoi function creates splines of 
points being equidistant to the borders of the two nearest 
points [25]. The cell wall splines were developed after the 
pre-processing and segmentation of the images detailed 
in the previous section. The FIJI Voronoi function is then 
used on the image, creating cell wall splines that retain 
the overall layout of the original image. Thresholding 
was done one final time on the image to ensure that all 
of the splines are clearly visible, this is also left to user 
judgment although it is a much easier process than the 
first thresholding. The final step was to ensure that the 
Voronoi function did not create any irregularities, usually 
showing up as a triangular shape branching off a cell 

wall. To correct these, they were simply selected with the 
freehand selection tool and deleted. See Fig. 2 comparing 
stem cross-section cropped microscope image (a), output 
of WEKA (b), binarized and cleaned image (c), Voronoi 
splines (d).

Matlab
The Voronoi splines are then processed in Matlab using 
a set of custom functions; see the Additional file 1. The 
function ColorByCellSize counts the number of cells in 
the image, and colors each cell from blue (small) to red 
(large) based on the size of the cell. This allows research-
ers to quickly quantify the number of cells, and get a 
visual representation of the distribution of cell sizes 
throughout the image. For a more quantifiable cell size 
measure, MeasureCellSize produces a histogram of the 
sizes of the cells in the image. Finally, CreateFEM traces 
the Voronoi splines and creates a Python Script file (*.py) 
that can be executed in Abaqus/CAE to create a two-
dimensional FEM of the cell wall structure. These func-
tions are available at the github repository https://​github.​
com/​cstub​bsFDU/​Plant​CellW​allFEM. An overview of the 
digitization and modeling process, including some of the 
output functions can be seen on Fig. 3

Finite element model
The finite element models were developed in Abaqus/
CAE 2021. Each FEM was built as a two-dimensional 
model, using the geometry output from the Matlab func-
tion CreateFEM. The model was then converted from 
pixels to microns using the microscope resolution of the 
images. The geometry was meshed using two-node linear 
beam elements (B21) with a seed size of 1  μm. The cell 
walls were modeled as a uniform thickness of 4.3 μm for 
the Zea mays samples, as discussed in the next section. 

Fig. 2  Zea mays stem cross-section (100 ×) (from left to right) cropped microscope image (a), output of WEKA (b), binarized and cleaned image (c), 
Voronoi splines (d)

https://github.com/cstubbsFDU/PlantCellWallFEM
https://github.com/cstubbsFDU/PlantCellWallFEM
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The model was two-dimensional with an assumption of 
plane stress. A single homogeneous material was used 
for the cell walls, which was assumed to be linear-elas-
tic and isotropic. The cells were assumed to be hollow, 
with no cell interior material modeled. Many of these 
assumptions are admittedly simplifications of the cel-
lular microstructure, and are discussed in further detail 
in the Limitations section. Boundary conditions fixed 
the bottom nodes in the vertical direction, fixed the left-
most and rightmost nodes in the horizontal direction, 
and stretched the top nodes by 1  μm. The FEMs were 
analyzed using a non-linear, full Newton direct solver in 
Abaqus/Standard 2021. From the resulting output data-
base, the reaction force was extracted from the model to 
obtain a stiffness value, and the maximum stress in the 
cell walls were queried.

Cell wall thickness
Unfortunately, the measurement of the cell wall thick-
ness is obfuscated by the thickness of the specimen. As 
such, the resulting binarized image (see Fig.  2) greatly 
overestimates the thickness of the cell wall, and must 

be corrected for. As it is not practical to determine 
the cell wall thickness from these images, the center-
lines are extracted from the binarized image, and the 
cell wall thickness is applied based on previous studies 
(Table  1). Previous research has measured the values 
of cell wall thickness for maize cells. Data ranged from 
2 micron to 6.8 microns depending on the study, sam-
ples, and methodology. The average cell wall thickness 
for maize as reported by several studies was found to be 
4.3 microns (Table 1).

Based on the values in Table 1, each model was ana-
lyzed at the average cell wall thickness value of 4.3 
microns. In addition, the effect of cell wall thickness 
on the structural stiffness of the model was calculated, 
and recommendations were made for future studies. 
It should be noted that although the average cell wall 
thickness value was applied to the entire model, the 
process was designed so that future researchers could 
apply different cell wall thicknesses to each cell wall, 
allowing for greater detail in the analysis than is pre-
sented in this paper.

Fig. 3  An overview of the digitization and modeling process, including some of the output functions: (a) a compound microscope image of the 
cellular structure of a stained specimen of Zea mays stem cross-section (100 ×); b the Voronoi curves output from the ImageJ post-processing 
workflow; c the output of ColorCellsBySize, which colors each cell from smallest (blue) to largest (red), and counts the total number of cells, d the 
output of CreateFEM, showing the resulting splines converted into Python script for importing into Abaqus/CAE, (e) the output of MeasureCellSize, 
showing a histogram of the cell sizes normalized to the total quantity of cells, (f) a 3-dimensional rendering of the FEM developed from the output 
splines, (g) a stress analysis of the structure, depicting von Mises stress from minimum (blue) to maximum (red) stresses, overlaid onto the original 
compound microscope image
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Cell wall sensitivity study
A sensitivity analysis was performed for the struc-
tural stiffness of the model based on the cell wall elas-
tic modulus and the cell wall thickness. The structural 
stiffness of the model was measured by extracting the 

reaction force required to stretch the right side of each 
model by 1 μm in the positive horizontal direction. This 
loading regime represents a computationally simulated 
standard tension test used to measure material proper-
ties. The models were then modified by either increas-
ing the cell wall thickness by 5% or increasing the cell 
wall’s elastic modulus by 5%, and then reanalyzing the 
structure. In this way, linear normalized sensitivities 
about the baseline model were calculated.

Results
Cell segmentation
Segmentation models of the cellular structure of Zea 
mays, Arrabidacea verugosa, Mussatia hyacinthine, 
Arabidopsis thaliana were successfully developed. 
To ensure the accuracy of the image processing, the 
resulting models were overlaid onto the original 
microscope images and inspected. Results were generally 
favorable using the WEKA segmentation method, and 
accurately captured the majority of the cellular structure. 
However, some notable shortcomings are present. First, 
the cells around the edges of the images tended to be less 
consistently modeled than the cells in towards the center 
of the image. Second, solitary small cells (cells that are 
less than approximately 1/3 of the average cell size and 
not surrounded by similarly-sized cells) are sometimes 
excluded from the segmentation, and are “shared” 
by their larger neighboring cells. Finally, the cellular 
structure is generally simplified, resulting in some loss 
of curvature of cell walls as well as the removal of small 
gaps between cells. As an example, Fig.  6 depicts the 
segmented splines overlaid onto the original microscope 
image for a sample of Arrabidacea verugosa, Mussatia 
hyacinthine, Arabidopsis thaliana.

Fig. 4  a Mussatia hyacinthine stem cross-section (100 ×) with 
cropped region highlighted by the rectangle; (b) the resulting 
Voronoi splines

Fig. 5  a, c Arabidopsis thaliana stem cross-section (100 ×) with cropped region highlighted by the rectangle; (b, d) the resulting Voronoi splines
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Finite element analyses
Finite element models were successfully developed 
from the extracted geometry and analyzed for stress 
and stiffness. Table  2 presents the resulting normalized 
sensitivities. The material sensitivity was similar across 
species, ranging from 0.96 to 1.00. The cell wall sensitivity 
varied from 2.3 (Mussatia hyacinthine) to 3.1 (Zea mays). 
Across the species investigated, it was found that the 

elastic modulus of the cell wall was found to have a 1.0 
normalized sensitivity to structural stiffness. This means 
that a 5% increase in the cell wall’s elastic modulus would 
result in a 5% increase in the elastic modulus of the tissue 
the cells comprise. Conversely, the cell wall thickness was 
found to have a 3.0 normalized sensitivity to structural 
stiffness. This means that a 5% increase in the cell wall 

Table 1  Previously published cell wall thickness data based on [27–30]

Source Nominal (um) Tolerance (um) Minimum (um) Maximum 
(um)

Tsalagkas, 2021 3.7 1.1 2.6 4.8

Usta, 1992 6.8 N/A 6.8 6.8
Garay, 2009 2.0 N/A 2.0 2.0

Kiaei, 2011 4.6 0.9 3.6 5.6

Average 4.3

Fig. 6  Original microscope images (top) and the resulting segmentation overlaid on the images (bottom); from left to right: Arrabidacea verugosa, 
Mussatia hyacinthine, Arabidopsis thaliana 
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thickness would result in a 15% increase to the elastic 
modulus of the tissue the cells comprise.

Stress analysis
Each of these models was analyzed for stress. This 
process allows researchers to analyze the stress in the 
cell walls, and then directly overlay these stresses on 
the original image taken from their microscope. This 
functionality is intended to help build intuition about 
the relationship between the cellular microstructure and 
the distribution of stresses within the cellular structure. 
See Fig.  7 showing an example finite element analysis 
of stresses in Zea mays stem, showing the cell wall von 
Mises stresses from minimum (blue) to maximum (red) 
overlaid onto the original microscope image.

Other samples
Both the WEKA segmentation and the manual 
segmentation methods have been proven to work 

on images of a wide range of quality. The clarity and 
the resolution of the images dictates the method of 
segmentation as well as the ease of processing.

Figure  4 exhibits the processing steps for Mussatia 
hyacinthine stem cross-section, traditionally prepared 
sample. The machine learning WEKA segmentation 
method was used to process the image. The method was 
largely unchanged from the description in the WEKA 
section of this paper. Minor adjustments were made 
regarding the post-WEKA thresholding values and the 
post-WEKA image clean up. As demonstrated in Fig. 2, 
it is evident that this method can be used in both high 
resolution specimens prepared under the traditional 
method as well as the low quality image of maize used for 
this experiment.

The next set of images, Fig. 5 show the WEKA segmen-
tation process being utilized on samples of Arabidopsis 
thaliana stem cross-sections. The WEKA segmentation 
worked on both samples; due to the clarity and resolution 
of the images, manual thresholding was not needed. See 
Fig. 5.

Discussion
The Arabidopsis thaliana, Mussatia hyacinthine, and 
Arrabidacea verugosa images were all segmented using 
the WEKA method. However, for the Zea mays that were 
sectioned using the methods described in [6], manual 
thresholding was required as described herein. This 
indicates that the WEKA method is most likely sufficient 
for samples prepared using traditional sectioning and 
microscopy techniques, while additional manual work 
may be required to develop computational models 
from sections taken using the methods described in [6]. 
However, in either case, the resulting computational 
model is of comparable accuracy regardless of the 
method used.

Table 2  Results table from a parametric study of cell wall 
thickness and cell wall material stiffness

Demographics Normalized sensitivity

Sample # Plant species Material 
stiffness

Wall thickness

1 Zea mays 0.96 3.13

2 Zea mays 1.00 3.08

3 Zea mays 1.00 3.04

4 Zea mays 1.00 3.04

5 Zea mays 1.00 3.08

6 Mussatia hyacinthine 1.00 2.28

7 Arabidopsis thaliana 1.00 3.07

8 Arabidopsis thaliana 1.00 2.92

9 Arrabidacea verugosa 1.00 2.92

Fig. 7  An example finite element analysis of stresses in Zea mays stem (100 ×), showing in cross-section the cell wall von Mises stresses from 
minimum (blue) to maximum (red) overlaid onto the original microscope image
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Cell shape and morphogenesis are defined in higher 
plants by a rigid and yet still flexible cell wall [31]. The 
cell wall constraints the internal turgor pressure of the 
cell to create a myriad of shapes and structures. These 
structures in turn display functional importance related 
the ability of the organism to withstand environmental 
stresses. One of the major stresses impacting agricultural 
efficiency is lodging of the stem and data provided herein 
support a systematic approach to fuse biology with 
engineering principles surrounding the complexity of cell 
wall integrity.

Results of this study demonstrates the feasibility 
and utility of a high-throughput digitization and 
analysis methodology. As the models developed are 
fully parameterizable, detailed sensitivity studies can 
be performed that modify the microstructure and 
calculate the resulting stress state. In this way, active 
designing of the microstructure can be accomplished, 
and a microstructure ideotype can be designed and 
incorporated into breeding programs. Future studies 
can investigate further cellular and microstructural 
phenotypes. Specifically, the (1) organization of vertices, 
(2) size of the cells, and (3) curvature of the cell walls 
have the potential to drastically impact the stress state of 
the cellular structure.

Such phenotypic development is important to stalk 
lodging for three key reasons. First, the parametric 
investigation of these models can directly lead to more 
targeted phenotyping methods and protocols by bet-
ter understanding the exact microstructural feature that 
needs to be measured. Second, although structural failure 
is often observed at the macroscopic tissue or plant level, 
the underlying failure mechanisms are a microscopic; 
cell-level material fracture and buckling directly propa-
gate into macroscopic structural failure. Thus, through 
the detailed parametric analysis of the microstructure, a 
better understanding of the causes of structural failure 
can be understood. Finally, the digitization process allows 
for more quantitative phenotypes that can be analyzed 
statistically in genetic and breeding studies. Phenotypes 
such as cell size, cell wall orientation, etc. can be quickly 
quantified and analyzed using the splines output in this 
method.

Limitations
The largest limitation of this study is that the cell wall 
digitization, quantification, and analysis is of two-
dimensional images. As such, the impact of cell wall 
depth and the quantification of the microstructure in 
the third dimension is not possible. Future studies are 
required to expand this technique to three-dimensional 
cellular structures, such as the data taken from confocal 
microscopy of micro computed tomography scans. 

However, this study represents an important first step 
in that direction, laying the required technological 
foundation for such a process.

It is important to note that the development of 
2-dimensional finite element models to investigate a 
3-dimensional mechanism is a significant simplification. 
The inherent assumptions in the use of plane stress 
2-dimensional models such as the ones developed herein 
are that (1) the top and bottom cell walls (the cell “end 
caps”) are negligible in stiffness, (2) the mechanical 
properties obtain from these models are isotropic at 
the tissue-level, (3) the variation in cell wall thickness 
is negligible, (4) the stress concentrations caused by 
such variations in cell wall thickness or partial thinning 
is ignored, and (5) the cells are hollow. All of these 
assumptions are most certainly incorrect, and represent 
significant limitations of the presented models. However, 
these models are a first step to be built from, with each 
future iteration of this technology to address these 
shortcomings in turn.

Additionally, there are limitations for both methods of 
segmentation and image processing. Neither method is 
100% accurate for every image and these limits must be 
accounted for while processing sections of cells.

The WEKA machine learning method works best with 
images of cells that have less noise and clearer cell inte-
riors. With more noise inside of the cells, the ML often 
confuses the inner cell with the cell walls and either mis-
interprets the size of the cell or excludes the cell entirely. 
Another limiting factor is the contrast of the cell images. 
Having a larger contrast will help the ML distinguish 
between inner cell and cell wall. Less contrast between 
the two categories can result in a longer processing time 
and potentially more error in the segmentation. The 
final major limit to the ML method is that it requires 
some user intuition on determining which cells to use as 
selections of the segmentation categories. The selections 
should include both clear and convoluted inner cells. 
Without a wide range of quality in the inner cell selec-
tions, the ML may only segment the cleanest of cells as 
the inner cells while excluding the more convoluted inner 
cells. Of course these limitations can be avoided based on 
the image contrast, brightness, and overall quality.

The manual segmentation technique has two major 
limits. The first is that this method requires much more 
user intuition since thresholding is done by the user more 
frequently. The second limit is that this method also 
requires more manual work of cleaning the cell images 
and removing noise. The irregularities and noise that 
occur in the image after thresholding must be inverted 
manually before creating the distance map and the Voro-
noi splines.
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Voronoi splines are limited to linear or mostly linear 
cell walls. In images with cells that have highly curved 
walls, the Voronoi splines create a linearized shape of the 
cell walls. This will have adverse effects on the simulation 
results and will cause them to be less accurate. However, 
other functions will continue to work such as the auto-
mated cell counting.

In addition, the process does not work well for highly 
rounded cells, such as those of the cork cambium 
of Arrabidacea verugosa as seen in Fig.  8. However, 
although the resulting splines and microstructural 
analysis functions are inaccurate, the cell counting still 
functions properly.

Finally, the MATLAB algorithm was developed to 
separate cell walls at their vertices according to their pixel 
connectivity and subsequently enable the creation of 
splines in Abaqus FEA. However, this process had some 
limitations due to the difference in pixel connectivity 
of cell walls in segmented images. Hence, some manual 
input was required to correct created splines in Abaqus 
FEA which ensured models were adequately built for 
subsequent analysis.

The stated purpose of this study was to present a 
relatively inexpensive method for high-throughput 
digitization and quantification of plant cells that can 
be used to create two-dimensional FEMs. This is 
indeed a first step in a much longer process of creating 
3-dimensional, full cross-section plant cell models. Thus, 
the sizes of the samples, though varied, are admittedly 
small (approximately 30–50 cells on average). This was 
because the models presented herein are intended to 
provide a demonstrable proof-of-concept methodology 
to build on for 3-dimensional models.

Conclusions
Stress testing and analysis on structural members is 
essential to understanding the physical limitations of 
the morphology of plant stalks and their resistance to 
lodging. A robust and effective method of segmenting 
cell images of varied quality and creating finite element 
models has been presented. This method can be applied 
to many different images of both conventional and 
unconventional sectioning and staining processes. With 
this process, cost-effective and repeatable simulations can 
be conducted to aid in the understanding of stalk lodging 
in various crops. Readily available data from this process 
includes a stress analysis of cell walls, numbers of cells in 
an image, and degree of curvature of cell walls. Using this 
process in further studies could aid in the strengthening 
of crop stalks to prevent lodging by leveraging parametric 
cell wall models to develop targeted phenotypes for 
breeding studies.
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