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Abstract 

Background:  Root system architecture (RSA) is an essential characteristic for efficient water and nutrient absorption 
in terrestrial plants; its plasticity enables plants to respond to different soil environments. Better understanding of root 
plasticity is important in developing stress-tolerant crops. Non-invasive techniques that can measure roots in soils 
nondestructively, such as X-ray computed tomography (CT), are useful to evaluate RSA plasticity. However, although 
RSA plasticity can be measured by tracking individual root growth, only a few methods are available for tracking indi-
vidual roots from time-series three-dimensional (3D) images.

Results:  We developed a semi-automatic workflow that tracks individual root growth by vectorizing RSA from time-
series 3D images via two major steps. The first step involves 3D alignment of the time-series RSA images by itera-
tive closest point registration with point clouds generated by high-intensity particles in potted soils. This alignment 
ensures that the time-series RSA images overlap. The second step consists of backward prediction of vectorization, 
which is based on the phenomenon that the root length of the RSA vector at the earlier time point is shorter than 
that at the last time point. In other words, when CT scanning is performed at time point A and again at time point 
B for the same pot, the CT data and RSA vectors at time points A and B will almost overlap, but not where the roots 
have grown. We assumed that given a manually created RSA vector at the last time point of the time series, all RSA 
vectors except those at the last time point could be automatically predicted by referring to the corresponding RSA 
images. Using 21 time-series CT volumes of a potted plant of upland rice (Oryza sativa), this workflow revealed that 
the root elongation speed increased with age. Compared with a workflow that does not use backward prediction, the 
workflow with backward prediction reduced the manual labor time by 95%.

Conclusions:  We developed a workflow to efficiently generate time-series RSA vectors from time-series X-ray CT 
volumes. We named this workflow ’RSAtrace4D’ and are confident that it can be applied to the time-series analysis of 
RSA development and plasticity.

Keywords:  Back prediction, Crown root, Image analysis, Image processing, Nodal root, Radicle, Root growth 
measurement, Root system architecture, Seminal root, Sequential images

Background
Plant roots are essential for water and nutrient uptake 
from the soil. Root growth pattern through the soil vol-
ume is a major determinant of the ability of plants to 
absorb water and nutrients [1]. For example, by growing 
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roots in the soil area with fertilizer or water, roots can 
absorb water and/or nutrients efficiently [2–5]. Con-
versely, by avoiding root growth in polluted soils, roots 
do not absorb substances detrimental to plant growth [6]. 
The resulting specific root growth pattern is known as 
root system architecture (RSA) [1] and this RSA plastic-
ity is a promising breeding target for making crops resil-
ient to stressful soils [7]. However, there are several issues 
to be addressed when measuring RSA plasticity in soils.

Measurements of RSA plasticity in soils must be non-
destructive, because destructive measurements disrupt 
the three-dimensional (3D) growth pattern of the roots 
in the soil and make it impossible to observe changes 
in RSA over time. For example, shovelomics [8], which 
uses shovels to excavate the roots from the soil to meas-
ure RSA traits, or the monolith method [9], which uses 
boxes or cylinders with an open bottom to collect soil 
blocks by driving the monolith into the ground, are sim-
ple and commonly used destructive methods for RSA 
analysis; however, neither of them meets the conditions 
for measuring RSA plasticity. On the other hand, widely 
used nondestructive measurement techniques, such as 
the rhizotron, the minirhizotron, or the root box, involve 
installing transparent plexiglass plates or tubes in the soil 
to capture images of the roots growing adjacent to the 
plexiglass surface [10–14]. These nondestructive meth-
ods can be used to evaluate RSA development over time 
by acquiring images of the glass surface and isolating 
root segments in the images using an image processing 
approach [15–17]. However, these nondestructive meth-
ods are limited to the observation of RSA development 
occurring on the plexiglass surface, and the installation of 
plexiglass affects root growth.

Other nondestructive techniques for in  vivo root 
measurement, use 3D imaging with X-ray computed 
tomography (CT) and magnetic resonance imaging 
(MRI) to scan the soil profile and create 3D images that 
include root segments [18]. In most cases, such root seg-
ments are extracted using image processing approaches 
to measure root distribution in the soil as an RSA trait 
[19–21]. Thus, X-ray CT and MRI effectively overcome 
the shortcomings mentioned above. However, most 
studies have only analyzed overall parameters, such as 
root distribution in the soil but not specific parameters, 
such as individual root growth rates, as it is difficult to 
track all individual roots in 3D images. Nonetheless, spe-
cific parameters are most important for estimating how 
each root responds to the particular soil environment in 
which it is trying to grow, and which varies greatly even 
over very short distances.Numerous studies have meas-
ured the specific parameters of individual roots in two-
dimensional images. Thus, for example, in an experiment 
using a root box with soil substrates, the root elongation 

rate was measured by tracking rice (Oryza sativa) and 
sorghum (Sorghum bicolor) root tips [22]. Similarly, in 
Arabidopsis (Arabidopsis thaliana), the root elongation 
rate was measured using solid medium plates [23–25]. 
In both cases, cameras were placed at the root tips to 
measure root elongation. However, using these meth-
ods, only a limited number of roots could be observed, 
whereby, elongation of the entire RSA could not be meas-
ured. Furthermore, even without limiting the dimension, 
most studies that analyze the entire RSA focus on root 
distribution [26–28], as the root segmentation and skel-
etonization required for root distribution measurements 
are relatively easy. However, the problem is more compli-
cated when a large number of roots is to be tracked. Cur-
rently, there are very few methods for measuring specific 
parameters of all the roots that make up the RSA.

Once roots have extended into different portions of 
the soil profile, their spatial position remains unchanged 
unless pressure is applied to the soil or soil volume 
changes owing to changes in soil moisture content [29, 
30]. In other words, provided a root does not change 
its spatial coordinates once it has elongated, then roots 
developing at different times will necessarily overlap 
among themselves, such that matching underground sec-
tions at different plant growth stages is relatively easy 
[27]. In this case, RSA development can be easily calcu-
lated from the overlapping sections of the soil using the 
RSA vector that represents the RSA skeleton as a set of 
sequences of coordinate points [31, 32]. Therefore, if the 
RSA vector for all sampling time points is available, we 
can measure RSA development from the overlapping 
portions [33]. Nonetheless, the issue with this method-
ology is how to efficiently generate an RSA vector for all 
sampling time points. A possible solution is to predict a 
vector at one time point, given a vector at another time 
point.

There are two types of predictions: forward and back-
ward. Forward prediction predicts the future after a cer-
tain time point, whereas backward prediction predicts 
the past [34]. Both types of prediction have been used 
with sequential digital data, such as satellite images at 
different time points [35] and video frames [34, 36]. We 
hypothesized that these predictions may be possible for 
sequential vector data as well. Focusing on the root tip, 
the forward prediction needs to estimate the direction of 
root growth, whereas the backward prediction does not 
need to estimate the direction, because the one-time RSA 
vector perfectly overlaps with the RSA vector at a previ-
ous time point. Therefore, backward prediction is suit-
able for predicting time-series RSA vectors.

In this study, we developed a workflow that semi-auto-
matically created time-series RSA vectors from X-ray CT 
images captured every day and calculated the time-series 
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local RSA parameters. This was achieved by using a soil 
substrate whose volume barely changes with water con-
tent [19] and backward prediction to compute the RSA 
vector at all time points in the time series based on the 
RSA vector at the last time point of the time series.

Results
Workflow without backward prediction
When backward prediction is not used, an RSA vector 
must be created for all the time points. Figure  1 shows 
a schematic for measuring RSA traits from time-series 
X-ray CT volumes without backward prediction. In this 
example, six X-ray CT scans of a single potted rice plant 
resulted in six X-ray CT volumes. Each X-ray CT vol-
ume was converted to an RSA-segmented volume using 
the RSA visualization software RSAvis3D [19], and then 
to the RSA vector using the RSA vectorization software 
RSAtrace3D [31]. Then, RSA traits were calculated based 
on the six RSA vectors. Segmentation is fully automated; 
however, vectorization requires human intervention [19, 
31]. Given n number of time points, the effort required 
is n times greater than when the number of time points 
is one.

Workflow with backward prediction
Figure 2 shows a schematic diagram for measuring RSA 
traits from time-series X-ray CT volumes using back-
ward prediction. To perform backward prediction, the 
time-series CT volumes should be aligned in 3D because 
the position and angle of the pot on the turntable in the 
X-ray CT machine are different every day. After align-
ment, each X-ray CT volume was converted to an 

RSA-segmented volume. The vectorization step differs 
from that without backward prediction. We must cre-
ate an RSA vector only at the last time point of the time 
series. The remaining RSA vectors at other time points 
were automatically created by backward prediction. 
Compared with the workflow without backward predic-
tion, this workflow reduces the amount of work requiring 
human intervention to 1/n.

Volume alignment by registration
Generally, 3D volume alignment is performed by extract-
ing feature points from a 3D volume and performing 
registration with these points [37]. However, the fea-
ture points of the roots change as roots grow. Therefore, 
extraction of feature points from the soil substrate is 
desirable. To this purpose, we focused on particles such 
as minerals, which show high-intensity signals in the CT 
images of soil substrates. Minerals absorb X-rays well; 
therefore, they are represented as white dots in the CT 
volume (Fig. 3a). A 3D point cloud from the dots in the 
CT volume was created and converted to a 2D point 
cloud because the vertical positions did not need to be 
aligned (Fig. 3b). These point clouds were designated as 
SBI (Soil Block Identifier). If a soil substrate with mini-
mal volume changes is used, the time-series SBI should 
be identical. We performed ICP (iterative closest point) 
registration [38] with the time-series SBI to align the 
time-series CT volumes (Fig. 3c). ICP registration using 
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Fig. 1  Workflow without backward prediction. Segmentation: CT 
volumes were converted to RSA-segmented volumes by RSAvis3D. 
Projection views of 3D RSA-segmented volumes are shown. 
Vectorization: RSA-segmented volumes were vectorized to RSA 
vector. Projection views of 3D RSA-segmented volumes merged with 
3D vectors. RSA vector is drawn in green
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Fig. 2  Workflow with backward prediction. Segmentation: CT 
volumes were converted to RSA-segmented volumes by RSAvis3D. 
Projection views of 3D RSA-segmented volumes are shown. 
Vectorization: RSA-segmented volumes were vectorized to an RSA 
vector. Projection views of 3D RSA-segmented volumes merged with 
3D vectors. RSA vector is drawn in green. Backward prediction: The 
ochre arrows indicate the direction of the backward prediction
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SBI was designated SBI-ICP registration. Subsequently, 
we used 27 CT volumes of rice RSA from 7 to 27  days 
after sowing (DAS) as sample materials (Teramoto et al., 
2020). Figure 3d, e, show the overlaid images of 21 top-
view projections of rice RSA from 7 to 27 DAS with and 
without SBI-ICP registration, respectively. Without SBI-
ICP registration, the overlaid image was blurred (Fig. 3d), 
whereas, it became clear with SBI-ICP registration 
(Fig. 3e). The sequential animations are shown in Addi-
tional file 1: Movie S1. These results indicate that the SBI-
ICP registration fully aligned CT volumes.

Overview of backward prediction
A schematic of backward prediction is shown in Fig.  4. 
Given three root segments at three different time points 
(Fig. 4a), the root segments at earlier time points should 
be shorter than the root segment at the last time point 

(Fig.  4b). If we can determine how much shorter it is, 
backward prediction is possible. The RSA vector at the 
last time point will be overlaid completely on the root 
segment at the last time point, but incompletely on the 
root segment at the earlier time point (Fig. 4c). Therefore, 
with a discriminator that can judge whether the vector 
node overlaps with the root segment or not, we can esti-
mate the length of the root segment and perform back-
ward prediction.

Discriminator for overlapping
We designed a convolutional neural network (CNN)-
based simple discriminator to determine the overlap 
between the vector node and the root segment. This 
discriminator was trained using the RSA segments 
and vector data at the last time point. Volume blocks 
(17 × 17 × 17) were sampled from the RSA-segmented 
data as positive and negative training data, and positive 
and negative data were collected at coordinates where 
vector nodes were located and not located, respectively 
(Fig. 5a). The blocks were converted to scalars using the 
CNN, and the scalars were normalized to 0–1 using the 
sigmoid function as scores (Fig.  5b). A score of 1 indi-
cated that the input data was an RSA segment and a score 
of 0 indicated that it was not. Because scoring of faint 
segments, such as a seminal root (indicated by arrow-
heads in Fig.  5a), by the discriminator trained with all 
vector data was difficult, sub-discriminators fine-tuned 
by roots were used for backward prediction (Fig. 5c).

(a) (b)

2D

3D

(c)
CT volume

ICP registration

(d) (e)

Fig. 3  SBI-ICP registration. a A x–y slice of an X-ray CT image. Image 
size is 307.2 mm × 307.2 mm. The yellow arrowhead indicates high 
intensity signals derived from minerals. b A point cloud based on 
high intensity signals derived from minerals. The point cloud was 
designated as SBI (soil block identifier). c ICP (iterative closest point) 
registration with time-series X-ray CT volumes. d Overlaid top-view 
projections of 21 RSA-segmented volumes without and e with ICP 
registration
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Cultivation
Time point A Time point B Time point C

Time

Fig. 4  Overview of backward prediction in this study. a Time course 
diagram of cultivation. There are three sampling time points, A, B, 
and C. The last data of the time series is obtained at sampling time 
point C. b Schematic diagram showing that the roots are shorter 
before a certain time point. The black segment indicates a root at 
time points A, B, and C.  c Schematic diagram of overlaying a root 
segment drawn in (b) and a RSA vector. Green circles indicate vector 
nodes and green lines indicate a connection between the nodes. 
Each node was scored based on whether the node overlapped with 
the root segment. RSA vector at sampling time point C should be 
manually prepared. RSA vectors at sampling time points A and B are 
automatically predicted by backward prediction
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Fully automated backward prediction
We vectorized the RSA-segmented volume of the last day 
(27 DAS) using RSAtrace3D [31] and performed a back-
ward prediction. An example of backward prediction for 
one root at 10 DAS is shown in Fig.  6a. Approximately 
120 vector nodes were used to represent the roots. The 
score for each node was calculated using a discrimina-
tor, and then plotted. We found a border between scores 
0 and 1, indicating that the root length was shortened to 
the border. For all roots, all borders from 7 to 27 DAS 
were estimated to calculate the relative length (RL) from 
root tip (Fig.  6b); 0.0 indicated the full-length and 1.0 
indicated roots with length 0. There were 26 roots, but 
one root (Root #02) did not show a change in RL (Addi-
tional file 2: Movie S2) because this root was full-length 
at 7 DAS. Thus, 25 trajectories were obtained. The RL of 
all roots was 0.0 at 27 DAS because the roots at 27 DAS 
were the longest. Through backward tracing, the RL of 
each root approached 1.0. Most of the trajectories were 
represented as lines bent at two points. An example of 
this is shown in Fig.  6c. The slope of the line indicates 
that RL changed. In other words, the roots elongated by 
spending the days it took RL to change from 0.0 to 1.0. 
The two points of bending can be regarded as the begin-
ning and termination of root elongation. Given that the 

days of the beginning and ending of root elongation 
are x1 and x2 , respectively, and that the starting point is 
P1(x1, 1) while the end point is P2(x2, 0) , the two points 
can be calculated by approximating the trajectory using 
Eq. (1):

However, some trajectories, such as those shown in 
Fig. 6d and e, could not be represented as lines that bent 
at two points. As shown in Fig. 6d, RL stopped changing 
approximately at 21 DAS, and approached 0.0 again at 
approximately 12 DAS. This type of trajectory was cre-
ated by overlapping with another trajectory from 7 to 21 
DAS. Therefore, the slope from 21 to 24 DAS reflected 
the original root growth. When the period from 7 to 
12 DAS was ignored, the trajectory in Fig.  6d could be 
regarded as a line that bent into two points. Given that 
ythr is RL when the change in RL stopped, the two points 
can be calculated by approximating the trajectory using 
Eq. (2):

As shown in Fig. 6e, RL had already started at 7 DAS, 
and the slope was interrupted before it reached 1.0. In 
this case, assuming the slope extends to 0 DAS, the two 
points can be calculated by approximating the trajec-
tory using Eq. (1). All trajectories after approximation are 
plotted in Fig. 6f, which represents the elongation pattern 
of each root.

Reconstruction of RSA vector and quantification of root 
growth
Using backward-prediction results, RSA vectors at all 
time points were reconstructed (Additional file 3: Movie 
S3). This was achieved by shortening the vector at 27 
DAS using RL. Vectors almost identical to those cre-
ated without backward prediction were created. This 
time-series of vector data was used to evaluate the transi-
tion of root number and elongation rate. The root num-
ber increased linearly (Fig.  7a), and the elongation rate 
was significantly higher in late emerging roots (Fig. 7b). 
These results suggest that the elongation rate of the roots 
depends on the timing of root emergence.

Improving efficiency through backward prediction
We evaluated the amount of effort that could be saved by 
using backward prediction (Table  1). The program was 
run in a 64-bit Ubuntu 20.04 LTS (CPU: Intel® Core™ 
i7-8700 CPU@3.20 GHz, memory:32 GB, GPU: NVIDIA 
GeForce RTX 2080 Ti). Without backward prediction, 
RSA segmentation and vectorization required 231  min. 
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Fig. 5  Discriminator for overlapping. a Based on the vector node 
coordinates, blocks with size 17 × 17 × 17 voxels were cropped 
as positive and negative training data. The white arrowheads 
indicate faint root segments. b Convolutional neural network of the 
discriminator. Conv3D: 3D convolution, BN, batch normalization. c 
Fine-tuning of the discriminator model for each root
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Instead, with backward prediction, the segmentation 
time was the same but the vectorization time, which is 
the only process that requires human intervention, was 

reduced to 1/21. It takes some additional time for reg-
istration and backward prediction, but all the analyses 
were concluded in 46 min.
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Fig. 6  A test case of backward prediction. Time-series X-ray CT volumes from 7 to 27 days after sowing was used. a An example of backward 
prediction of a root. Node indexes (the number of nodes counted from the root tip) and scores calculated by the discriminator were plotted. The 
red dashed line is represented by the equation in the figure. b An example of backward prediction of all 25 roots. Node index was converted into 
relative length (RL) from the root tip; 0.0 indicates the full-length and 1.0 indicates the root with length 0. Each trajectory corresponded to each 
root. c An example of fitting for basic trajectories. A trajectory was approximated with a line having two bending points. The red dashed line is 
represented by the equation in the figure. d An example of fitting for overlapped trajectories. e An example of fitting for incomplete trajectories. f 
All 25 trajectories after approximation
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Discussion
An efficient method for creating RSA vectors from time-
series 3D volumetric data is required for the measure-
ment of RSA plasticity. In this study, we developed a 
semi-automatic workflow for this purpose, which con-
sists of SBI-ICP registration based on the distribution of 
strong signals in soils and backward prediction that auto-
matically creates an RSA vector before a given reference 
point. Using the time-series RSA vector created, we suc-
cessfully measured RSA development. Thus, for example, 
we measured the elongation rate of individual roots. We 
propose that this workflow is applicable to the study of 
RSA plasticity. To the best of our knowledge, this is the 
first study to quantify RSA development by backward 
prediction of RSA vectors with time-series 3D volumet-
ric data. The implementation of this workflow, which is 
specified for rice, was named RSAtrace4D and is available 
at the GitHub repository (https://​github.​com/​st707​311g/​
RSAtr​ace4D).

RSAtrace4D enables a previously difficult analysis of 
the growth of the individual roots that make up RSA. 
Using 21 CT images of an upland rice variety at 21 time 
points, we demonstrated that the elongation rate of roots 
was higher at later developmental stages (Fig. 7). If such 
data can be easily obtained, it can be used not only to 
evaluate varietal differences but also to evaluate RSA 
plasticity in response to soil environment. For example, 
RSAtrace4D could be used for developmental analy-
sis of RSA in response to soil fertility level [26, 39–42], 
local soil compaction conditions [43–45], or global stress 
factors, such as drought [46], or high temperature [47]. 
Therefore, we believe that RSAtrace4D is an effective tool 
for elucidating the mechanisms of root development in 
heterogeneous environments and during environmental 
stress.

Using 21 CT images, we manually vectorized RSA at 
the last time point of the time series, and the RSA vec-
tors at all time points were automatically created using 
backward prediction. Given n number of time points, the 
required labor was calculated as 1/n , indicating that the 
greater the number of time-series data, the more labor-
saving it is. Additional processing time is required, as 
noted in Table 1; however, these processes are fully auto-
mated and have no impact on labor. The factors contrib-
uting to the success of this method are the fixation of 
roots in soils once they have grown, and alignment of 
CT volumes with strong signal in the soil (SBI-ICP reg-
istration). We used calcined clay Profile® Greens Grade™ 
(PROFILE Products, Buffalo, Illinois, USA) as a soil-like 
substrate [19]. Regardless of soil moisture conditions, its 
features showed little change in volume. Furthermore, 
the strong signal particles were moderately contaminated 

Fig. 7  Calculated root growth parameters in rice. a Changes in the root number over time. b Relationship between days after sowing (DAS) when 
roots emerge, and root elongation rate. * indicates significant Pearson’s correlation (significance level is 5%)

Table 1  Time required to quantify time-series X-ray CT images 
for 21 days.

Units are minutes. Bold font indicates a process that requires human 
intervention

Manual Backward 
prediction

Registration – 5

Segmentation 21 21

Vectorization 210 10
Backward prediction – 10

Quantification 0 0

Total 231 46

https://github.com/st707311g/RSAtrace4D
https://github.com/st707311g/RSAtrace4D
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(Fig. 3a), making them easy to use for SBI-ICP registra-
tion. However, particularly near the base, roots are dense, 
and there is a risk that the position of high-signal parti-
cles near the base may shift as the roots grow. Because 
ICP registration uses a point cloud and not a single point, 
some shifting with growth occurred which was not a 
problem for the month-long cultivation in this study. If 
SBI-ICP registration is performed using natural soil, the 
point cloud may be altered due to changes in soil vol-
ume during cultivation, and SBI-ICP registration may 
not work optimally. In such cases, the field soil should be 
adjusted to mix with a soil substrate whose volume does 
not change, such as calcined clay, so that the point cloud 
is not altered. Alternatively, plants should be grown in an 
environment where the soil volume is not altered.

The method described herein that uses backward pre-
diction has the potential for application to developmen-
tal analysis for aboveground parts of RSA, although there 
are some obstacles. In the current time-series analysis 
of aboveground traits, organ-level development can be 
tracked over time by plant part matching at different 
growth stages [48, 49]. This was achieved by matching the 
plant parts in 3D mesh data by aligning the 3D mesh data 
and regarding the overlapping parts as the same parts 
[49], or by matching the plant parts in 3D point-cloud 
data by isolating key points encoding both semantic and 
topology of different growth stages and performing reg-
istration of each point [48]. In both cases, there are cer-
tain requirements for time-series analysis. The first is to 
acquire time-series data at a high frequency to facilitate 
matching. A long interval between successive data acqui-
sition events will result in the inability to perform match-
ing due to changes in plant structure as the plant grows. 
Second, the matching feature points must be designated. 
Changing the feature points during growth makes match-
ing more difficult. Therefore, we assumed that backward 
prediction for the aboveground parts would be possible if 
scanning intervals were as short as possible, and the shift 
of feature points should be compensated.

For multiple plants in one volume, we assumed that 
this workflow would work properly although it is neces-
sary to vectorize each individual plant. Therefore, it is 
expected to be used to study plant-plant interactions. 
Furthermore, this workflow is considered applicable even 
if the type of data changes because the discriminator is 
retrained for each pot. The registration algorithm may 
need to be modified when the soil type or other param-
eters are changed, but the source code is available on 
GitHub; therefore, researchers are free to modify it. The 
only step that requires human intervention is the creation 
of vector data at the final sampling time point. At pre-
sent, full automation of RSA vectorization is one of the 

issues that should be solved to accelerate RSA research 
[50]. Therefore, automatically creating RSA vectors at the 
last time point is a challenge that needs to be solved to 
enable fully automatic RSA measurements of time-series 
image data. Because analysis over time is required for 
both above- and below-ground structures, such analysis 
will become more widespread based on this method.

Conclusions
We developed a semi-automatic workflow for the meas-
urement of 3D root system development from time-series 
X-ray computed tomography volumes using backward 
prediction. We observed changes in root elongation rate 
with growth, which indicated that this workflow is a use-
ful tool for root growth measurement, and that it can be 
applied to the study of RSA plasticity responses to vary-
ing soil environments.

Methods
We used X-ray CT data as previously described, together 
which details of the plant materials, growth conditions, 
and X-ray CT scanning conditions [19]. A brief descrip-
tion of the process is provided below.

Plant materials and growth conditions
The upland rice variety ‘Kinandang Patong’ (IRGC 
#23,364) was used in the experiments described herein. 
Plants were cultivated in a growth chamber for 28  days 
in 25 cm deep and 20 cm diameter pots (TSP2530P, Tecs, 
Itako, Ibaraki, Japan) filled with Profile® (Greens Grade™, 
PROFILE Products, Buffalo, Illinois, USA), an inorganic 
soil amendment commonly used in cultivation systems 
for X-ray CT scanning. A hydroponic solution (pH 5.5) 
consisting of 1.23 mM NO3

−, 0.41 mM NH4
+, 0.18 mM 

H2PO4
−, 1.00 mM SO4

2−, 1.78 mM K+, 0.55 mM Mg2+, 
0.37 mM Ca2+, and 8.9 μM Fe3+ was used to saturate the 
growth media and ion-exchanged water was supplied 
from the pot bottom during cultivation. The growth con-
ditions were 14 h photoperiod regime, temperature from 
25 to 30 °C, and humidity from 50 to 60%.

X‑ray CT scanning and root segmentation
Rice roots were imaged daily from 7 to 21 DAS using the 
X-ray CT system inspeXio SMX-225CT FPD HR (Shi-
madzu Corporation, Nakagyo-ku, Kyoto, Japan). The 
scanning conditions were as follows: tube voltage was 
set at 225  kV, tube current at 500  μA, 1.0-mm Cu (cop-
per) filter, 1200 projections, using a signal averaging two 
frames over 360° without binning (pixel detector reso-
lution: 3000 × 3000), at 4.0 fps. The final spatial resolu-
tion was 0.3  mm, corresponding to a total volume of 
30.72 × 30.72 × 25.8 cm3. Root segments were isolated 
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using the segmentation software RSAvis3D [19]. To elimi-
nate the roots that changed their growth direction by 
touching the pot wall, an area 18  cm in diameter was 
isolated.

SBI‑ICP registration
Python version 3.8.12 was used for SBI-ICP registration 
[51]. The CT volumes were loaded as NumPy arrays [52]. 
The regions with high intensity were isolated by threshold-
ing, and their centroids were calculated by the ‘regionprops’ 
function from scikit-image package version 0.18.3 [53]. The 
centroids were converted into a 3D point cloud by Open3D 
package [54] and ICP registration was performed by the 
‘registration_icp’ function in Open3D package (0.13.0).

Backward prediction
Again, Python version 3.8.12 was used for this purpose. 
The registered CT volumes were converted into RSA-seg-
mented volumes using RSAvis3D. Twenty six roots in the 
RSA-segmented volume at 27 DAS were vectorized using 
RSAtrace3D. The 2835 node points that make up the vec-
tor were extracted as positive nodes. Negative nodes of the 
same number were randomly selected such as not to over-
lap with positive nodes (Fig. 5a). A 17 × 17 × 17 block was 
extracted from each node. Using 5670 nodes, the U-Net 
model was trained for 100 epochs. The structure of the 
model is shown in Fig. 5b. The loss was defined as the mean 
squared error (MSE), and the Adam optimizer was used 
at a learning rate of 1e-5. Training was stopped when the 
loss fell below 0.05 five times consecutively. By fine-tuning 
the trained model, the submodel for each root was trained 
again (Fig. 5c).

Using the trained models, the RSA vectors from 7 to 26 
DAS were predicted. A score was calculated for each node, 
and the length of the vector was determined. Then, a graph 
was created with the x-axis as the node index (the number 
of nodes counted from the root tip) and the y-axis as the 
score (Fig. 6a). By approximating this plot with Eq. (3), the 
borderline between scores of 0 and 1, xthr , was calculated.

Approximation was performed using brute force, and 
xthr , whose MSE was the smallest, was selected. Thus, 
xthr was converted into RL, and a graph was created with 
the x-axis as DAS and the y-axis as RL (Fig. 6b). DAS at 
the time root elongation began ( x1 ), and when it was con-
cluded ( x2 ), were calculated by approximating each line 
on the graph with Eq. (4).

(3)y = f (x) =

{

0, x; xthr
1, x ≥ xthr

where ythr is the y value at which changes in RL are 
stalled (Fig.  6d). Approximation was performed using 
brute force, and x1 and x2 , for which MSE was smallest.

Calculation of root number and root elongation rate
Root length was calculated from the root length at 27 
DAS and RL. Given that the root length on the last day 
is Length and the root length at n DAS is Lengthn , this 
value was calculated using Eq. (5).

If Lengthn is zero or RL is one, the root has not yet ini-
tiated at n DAS. The number of roots for which Lengthn 
was greater than zero was defined as the root number at n 
DAS. Pearson’s correlation test was performed using the 
‘cor.test’ function of R, version 3.6.3.
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