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Abstract 

Background:  Researchers interested in the seed size of rapeseed need to quantify the cell size and number of cells 
in the seed coat, embryo and silique wall. Scanning electron microscope-based methods have been demonstrated 
to be feasible but laborious and costly. After image preparation, the cell parameters are generally evaluated manu-
ally, which is time consuming and a major bottleneck for large-scale analysis. Recently, two machine learning-based 
algorithms, Trainable Weka Segmentation (TWS) and Cellpose, were released to overcome this long-standing prob-
lem. Moreover, the MorphoLibJ and LabelsToROIs plugins in Fiji provide user-friendly tools to deal with cell segmenta-
tion files. We attempted to verify the practicability and efficiency of these advanced tools for various types of cells in 
rapeseed.

Results:  We simplified the current image preparation procedure by skipping the fixation step and demonstrated the 
feasibility of the simplified procedure. We developed three methods to automatically process multicellular images of 
various tissues in rapeseed. The TWS–Fiji (TF) method combines cell detection with TWS and cell measurement with 
Fiji, enabling the accurate quantification of seed coat cells. The Cellpose–Fiji (CF) method, based on cell segmenta-
tion with Cellpose and quantification with Fiji, achieves good performance but exhibits systematic error. By removing 
border labels with MorphoLibJ and detecting regions of interest (ROIs) with LabelsToROIs, the Cellpose–MorphoLibJ–
LabelsToROIs (CML) method achieves human-level performance on bright-field images of seed coat cells. Intrigu-
ingly, the CML method needs very little manual calibration, a property that makes it suitable for massive-scale image 
processing. Through a large-scale quantitative evaluation of seed coat cells, we demonstrated the robustness and 
high efficiency of the CML method at both the single-cell level and the sample level. Furthermore, we extended the 
application of the CML method to developing seed coat, embryo and silique wall cells and acquired highly precise 
and reliable results, indicating the versatility of this method for use in multiple scenarios.

Conclusions:  The CML method is highly accurate and free of the need for manual correction. Hence, it can be 
applied for the low-cost, high-throughput quantification of diverse cell types in rapeseed with high efficiency. We 
envision that this method will facilitate the functional genomics and microphenomics studies of rapeseed and other 
crops.
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Background
As the second most cultivated oilseed crop worldwide, 
rapeseed (Brassica napus L.) is one of the world’s most 
important sources of vegetable oil [1]. Rapeseed yield, a 
key concern of breeders and farmers, is characterized in 
terms of the number of siliques per plant, the number of 
seeds per silique and thousand seed weight. It has been 
reported that the seed weight shows an extremely signifi-
cant correlation with the seed size in rapeseed [2]. The 
current understanding of the mechanisms controlling 
seed size reveals several signaling pathways that function 
through either maternal tissues (seed coat) or zygotic tis-
sues (embryo, endosperm) [3]. As a protective tissue for 
the developing zygote, the seed coat orchestrates signal 
transduction between the endosperm/embryo and the 
external environment [4]. Additionally, the seed coat 
acts as a constraint and determines the seed size [5]. The 
embryo, as a zygotic tissue, can affect seed growth mater-
nally by promoting cotyledon cell expansion or prolifera-
tion [6]. In addition to the seed parameters, the silique 
length also plays a major role in seed size regulation 
[7–10]. Silique wall cell elongation affects silique length 
and surface area and may lead to the accumulation of 
photosynthates and seed filling. In practice, researchers 
interested in seed size frequently need to observe the cell 
status and calculate the cell size and the number of cells 
in the seed coat, embryo, and silique wall.

The seed coat is derived from the outer and inner 
integuments of the ovule. In rapeseed, the mature seed 
coat consists of three layers: the epidermis/sub-epider-
mis, palisade and aleurone. As the most characteristic 
layer of the mature seed coat, the palisade is the main 
protective tissue [11]. The seed coat patterns determined 
by the palisade cells differ greatly among different bras-
sica species [12]. Under scanning electron microscopy 
(SEM), the seed coat cell patterns can be recognized and 
used to measure cell size [13]. However, certain chal-
lenges hinder the application of this method, i.e., the seed 
margins of some materials are difficult to distinguish, and 
SEM assays are labor intensive and costly. As an alterna-
tive, bright-field images of seed coat cells can be acquired 
via a relatively simple procedure and applied for cell size 
measurement in rapeseed [2]. In both methods, however, 
the cell area is determined manually, which is time con-
suming and a major bottleneck for large-scale screening.

In fact, cell detection and quantitation are long-stand-
ing concerns of plant biologists [14–16]. Several auto-
mated and semiautomated measurement procedures 
have been developed to overcome this problem. For 

example, the cell-counter plugin in Fiji/ImageJ is widely 
used for counting cells of a certain area [16, 17]. Train-
able Weka Segmentation (TWS), another plugin in Fiji, 
combines machine learning with manual annotation to 
train a classifier and process the remaining data auto-
matically [18]. As a powerful tool for cell segmentation 
and object detection, TWS is widely applied in cell biol-
ogy [19, 20]. Recently, a deep learning-based segmenta-
tion method called Cellpose was developed to deal with 
highly diverse images of cells without pretraining [21]. 
By combining the horizontal and vertical gradients pre-
dicted by a U-Net-shaped neural network, Cellpose gen-
erates vector fields from topological maps and assigns 
each pixel within a cell to a path converging at the center 
via gradient tracking [21]. Compared to other deep 
learning architectures, Cellpose achieves higher perfor-
mance, especially on a previously unseen dataset [22]. 
Cellpose has been applied to segment myofibers within 
murine skeletal muscle with high accuracy and effi-
ciency, even on complex images [23]. However, Cellpose 
generates labeled images that are difficult to process for 
users with no programming skills; therefore, some user-
friendly plugins have been developed to solve this prob-
lem, including MorphoLibJ and LabelsToROIs [23, 24]. 
Although these advanced tools are powerful in cell seg-
mentation, they have not been applied for cell quantifica-
tion in rapeseed or other crops.

Here, we present a simple method to visualize the 
seed coat cells of mature and developing seeds, embryo 
cells, and silique wall cells. We also propose a cellular 
quantitation procedure based on Fiji and TWS/Cellpose 
for large-scale cell measurement. We have created sev-
eral Fiji macros to harvest the cellular properties of the 
segmented cells automatically. Our method is a cost-
efficient, labor-saving, and robust strategy that allows 
researchers to quantify the cell parameters of various 
types of cells in a high-throughput way.

Results
1. Overview of the procedure for seed coat cell 
quantification
Here, we describe how to quantify the seed param-
eters of rapeseed, including the seed coat cell size and 
number of cells. The entire procedure consists of five 
modules. (i) The seeds are photographed individually 
under a stereomicroscope (Fig. 1a). (ii) The seed images 
are processed using Fiji software to obtain the seed 
area and the seed surface area (Fig.  1b). (iii) The seed 
coat is peeled off, treated to make it transparent, and 
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photographed under an optical microscope to acquire 
seed coat cell images (Fig. 1c). (iv) The cell images are 
provided as input to the TWS–Fiji (TF) method or the 
Cellpose–MorphoLibJ–LabelsToROIs (CML) method 
to obtain the average cell size (Fig. 1d). (v) Finally, the 

number of seed coat cells is calculated as the seed sur-
face area divided by the average cell size (Fig. 1e). Step 
(iii) is simplified by skipping the fixation step, and steps 
(ii) and (iv) can be automated; therefore, this procedure 
can be applied to high-throughput datasets and shows 
great potential for microphenomics studies.

Fig. 1  Flowchart of the procedure for quantifying seed coat cell parameters. a Seed images are acquired under a stereomicroscope. b The seed 
images are processed with Fiji software to calculate the seed area. c The seed coats are peeled off and photographed under an optical microscope. 
d The cell images are processed using the TWS–Fiji-based method (TF method) or the Cellpose–MorphoLibJ–LabelsToROIs-based method (CML 
method) to obtain the average cell size. Left, TF method; right, CML method; TWS, Trainable WEKA Segmentation. e The number of cells is calculated 
as the seed surface area divided by the average cell size
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Acquisition of seed images and seed coat cell images
The commonly used method to measure seed coat cell 
size involves isolation of the seed coat, fixation with 
Formalin-Aceto-Alcohol (FAA) solution and a transpar-
ency procedure in chloral hydrate solution [2]. Consid-
ering that by the end of maturation, the cells of palisade 
layer of seed coat have all died but their cell walls remain 
[25], it is reasonable to postulate that the fixation of the 
cell structure can be skipped. First, we chose fully grown 
mature seeds of rapeseed and photographed each seed 
under a stereomicroscope to calculate the seed area/
diameter and the seed surface area (Fig.  2a, Additional 
file 1). Second, we let the seed imbibe and peeled off the 
seed coat (Fig. 2b, c). Third, we cut the seed coat in half 
and submerged it in clearing solution (Hoyer’s solution) 
to make it transparent (Fig. 2d). Then, a small piece in the 
equatorial cross-sectional area of each half was cut and 
prepared for optical microscope observation (Fig. 2e–g). 
Although the fixation step was skipped, we obtained 
clear, high-quality cell images that were adequate for fur-
ther analysis (Additional file 2).

Seed size measurement of mature seeds with Fiji
The black seeds photographed under the stereomicro-
scope could be easily distinguished from the white back-
ground (Additional file 1). By adjusting the threshold in 
Fiji, we could precisely identify the seed outlines. The 

seed area was calculated by analyzing particles and vis-
ualized by adding the ROIs (region of interest) (Fig. 3a). 
The results were summarized in a new window (Fig. 3b). 
To test the robustness and large-scale detection ability 
of our method, we chose 172 mature dry seeds of rape-
seed and measured their seed area. We created a macro 
to perform this task automatically and acquired results 
within minutes (Additional file  3). The average seed 
area was 2.40  mm2 with a range from 1.86 to 2.79  mm2 
(Fig. 3c, Additional file 4: Dataset S1). The results dem-
onstrate that the Fiji software is efficient and robust for 
measuring the seed size of rapeseed from raw images.

Seed coat cell quantification of mature seeds based 
on Trainable Weka Segmentation (TWS)
We obtained high-quality images of the seed coat cells, 
which showed a red background due to the pigmenta-
tion of the palisade layer. The palisade cell walls and cell 
cavities were clearly observed under a 400 × microscope 
(Additional file  2). Overall, the cells showed polygonal 
shapes and large differences in size.

The first idea for measuring the cell size was to divide 
a certain area by the number of cells in this area. We 
tried to segment the cells with TWS and count the cells 
with Fiji. This method is designated the TF method for 
short. The seed coat cell images were randomly cropped 
to retain  ~100 cells (Fig.  4a), which were considered 

Fig. 2  Flowchart of the acquisition of seed images and seed coat cell images. a Seeds were photographed under a stereomicroscope. b Each 
seed was submerged in distilled water. c Each seed was cut in half, and the seed coat was peeled off. d The seed coat was submerged in clearing 
solution. e The seed coat was cut into small pieces. f The seed coat pieces were prepared for photography. g Seed coat cells were photographed 
under an optical microscope
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sufficiently representative of the whole seed. We cropped 
an area of 29,193.14  μm2 from an image of seed coat 
cells and attempted to count the cells in this area. The 
cropped image was input into the TWS plugin in Fiji. 
We drew freehand selections around the seed cavity and 
wall regions and added them to classes 1 and 2, respec-
tively, and then trained a classifier for cell cavity detec-
tion (Fig. 4b). Then we applied the classifier and obtained 
probability maps (Fig.  4c). The cell cavity channel was 
split from the two probability map channels and used 
for further analysis (Fig.  4d). By setting an appropri-
ate threshold and analyzing particles, 92 cells were suc-
cessfully identified (Fig.  4e, f ). The ROIs were added to 
the original image for further inspection. Interestingly, 
although most of the cells could be correctly annotated, 
there were still 5 cells missing (Fig. 4g). We performed a 
manual calibration and eventually identified 97 cells. By 
dividing this area by the number of cells, we calculated 
the average cell area as 300.96 μm2 (Fig. 4h, i). We applied 
the TF method to another 6 images of seed coat cells and 
found that the average precision (AP) of cell detection 
reached 98.2% (Additional file  5: Fig. S1). These results 
reflect the feasibility and reliability of the TF method.

Seed coat cell size measurement of mature seeds based 
on Cellpose
We also attempted to segment individual cells by using 
Cellpose and then measure the area of each cell. We first 
attempted to segment the cells with Cellpose and calcu-
late the cell size with Fiji. This method, which is called 
the CF method, is summarized in Additional file  7: Fig. 
S2a. A cropped image of seed coat cells was input into 

the Cellpose algorithm for segmentation (Additional 
file 7: Fig. S2b). The cell mask file was then exported and 
processed further in Fiji (Additional file  7: Fig. S2c). By 
finding edges and setting the threshold to (0, 0), the cells 
were identified successfully (Additional file  7: Fig. S2d, 
e). Next, we performed cell area measurement using the 
“Analyze particles” plugin and found 70 cells, excluding 
the cells on the edges (Additional file 7: Fig. S2f ). Further-
more, we added ROIs to the original image and obtained 
the cell parameters of each cell (Additional file 7: Fig. S2g, 
h, Additional file 4: Dataset S8). Despite the highly accu-
rate cell segmentation, we consistently found small gaps 
between neighboring cells (Additional file  7: Fig. S2i), 
which occurred in the “Find edges” step and may cause 
bias in the cell areas.

To circumvent this bias, we tested another two 
plugins in Fiji, MorphoLibJ and LabelsToROIs, which 
were developed to handle labeled images in a user-
friendly manner. We call this method the CML method. 
First, a cropped image of seed coat cells was segmented 
by Cellpose to generate a cell mask file (Fig.  5a, b). 
Then, the mask file was fed to MorphoLibJ to remove 
border labels and extremely small labels (Fig.  5c), and 
was then passed to LabelsToROIs to transform the 
label information into ROIs (Fig.  5d). We saved the 
ROIs to the original file (Fig.  5e), and found nearly 
perfect cell segmentation results, with highly accu-
rate detection of the cell margins. The parameters of 
the individual cells were saved to a csv file. The aver-
age cell size was 318.17  μm2, with a wide range from 
194 to 466 μm2 (Fig. 5f ), which partially explained the 
difficulty of quantifying the seed coat cell size. The 

Fig. 3  Seed area measurement with Fiji. a Seed images were processed with the “Analyze particles” function in Fiji. Bar = 0.5 mm. b Summary 
window of Fiji. The seed area was identified from the seed image in a. c Frequency distribution analysis of the seed area (n = 172)
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average perimeter and Feret’s diameter were 73.16 μm 
and 25.34  μm, respectively (Additional file  4: Dataset 
S2). Defined as the longest distance between any two 
points along a boundary, Feret’s diameter is an impor-
tant characteristic for describing polygons. Unlike in 

the CF method, there were no gaps between adjacent 
cells, indicating that the CML method is more accurate. 
These results reveal that the CML method is practical 
and precise for seed coat cell quantification.

Fig. 4  Seed coat cell size measurement of mature seeds via the TF method. a A raw cell image was randomly cropped. Bar = 30 μm. b The cropped 
cell image was input into Trainable Weka Segmentation, and a classifier was trained to segment the cell cavities and cell walls. c A probability map 
was acquired. d The two channels were split, and the cell cavity channel was further processed. e A threshold was set automatically. f The cells were 
counted by analyzing particles. g ROIs were added to the original image. The arrows indicate missing cells. h The ROIs were manually calibrated. The 
arrows indicate missing cells labeled manually. i The cell counts before and after calibration were saved, and the cell size was calculated. Image a is 
provided in Additional file 6
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Comparison of the cell parameters calculated via the TF, CF 
and CML methods
We carefully manually labeled 362 seed coat cells as the 
gold standard and calculated the cell parameters. To 
evaluate the reliability of the CF and CML methods, we 
applied both methods to the manually labeled cells to 
obtain their areas. The cell areas calculated via the CML 
method showed no difference compared to those calcu-
lated manually, while the cell areas acquired via the CF 
method were significantly smaller than those acquired 
using the CML and manual methods (Fig. 6a, Additional 
file 4: Dataset S3). Both methods rely on labeled images, 
but the CF method generates 5–12% smaller data values 
than the CML method. This supports the idea that the CF 
method is biased because of the gaps between adjacent 
cells. The cell areas calculated via the CML and manual 
methods exhibit a significant positive correlation (Pear-
son’s R = 0.94) (Fig.  6b). These results reveal that the 
CML method is reasonably accurate and can achieve 
human-level performance.

To investigate the robustness of these methods, 
we applied them to 172 randomly selected seeds and 

obtained 344 images of seed coat cells (two images per 
seed). After segmentation with TWS or Cellpose, we cre-
ated macros to implement the following steps automati-
cally in Fiji. Finally, the cell parameters corresponding to 
all images were successfully and precisely quantified and 
exported (Additional file  4: Dataset S4). Based on the 
seed area, we calculated the seed surface area by consid-
ering the seed shape to be a standard sphere. By divid-
ing the seed surface area by the average cell size, we then 
estimated the number of seed coat cells for each seed. 
Interestingly, we found that the CML method was highly 
precise and barely needed manual correction (negligible, 
if any), indicating excellent potential for high-throughput 
analysis, whereas the TF method consistently needed 
calibration.

Finally, the seed parameters, including the seed area, 
average cell size and number of cells, were quantified 
and visualized (Fig. 6c, Additional file 4: Dataset S1). The 
average values of cell size derived from the TF and CML 
method were 276.77  μm2 and 283.02  μm2, respectively, 
while the corresponding numbers of cells were 34,985.1 
and 34,272.4. Accordingly, the average cell size and cell 

Fig. 5  Seed coat cell size measurement of mature seeds via the CML method. a A raw cell image was randomly cropped. Bar = 30 μm. b The cell 
mask was acquired using Cellpose. c The border labels were removed by the MorphoLibJ plugin. d The label information was transformed into 
ROIs by the LabelsToROIs plugin. e The ROIs were saved for future inspection. f The cell parameters were acquired from image a. The boxplots 
represent the median and the 25th and 75th quartiles; the whiskers represent the minimum and maximum (n = 67). Images a and b are provided in 
Additional file 6 and 8
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number calculated via the TF method were not signifi-
cantly different from those calculate via the CML method 
(Fig. 6c). The data acquired via the TF and CML methods 
revealed an extremely strong positive correlation (Pear-
son’s R = 0.98), demonstrating the robustness and pre-
cision of these methods (Fig. 6d). These results indicate 
that our strategy is highly efficient for high-throughput 
seed coat cell quantification.

In summary, the CML method is highly accurate at 
both the individual cell level and the sample level. Addi-
tionally, the CML method eliminates the need for most 

manual corrections. Therefore, we chose to focus on the 
CML method for further analysis.

Seed coat cell size measurement of developing seeds
Next, we investigated whether the CML method could 
be applied to the seed coat cells of developing seeds. We 
sampled developing seeds/ovules from siliques at 20 and 
30 days after flowering (DAF) and fixed them with FAA 
solution. Then, the samples were rendered transparent in 
clearing solution. Subsequently, the seed coats were cut 
into small pieces and photographed under a differential 

Fig. 6  Comparison of seed parameters calculated via different methods. a Individual cell areas calculated via the manual, CF and CML methods 
(n = 362). b Correlation analysis (Pearson, confidence interval = 95%) between the individual cell sizes calculated via the manual and CML methods 
(n = 362). c Seed parameters calculated via the TF and CML methods (n = 172). d Correlation analysis (Pearson, confidence interval = 95%) between 
the average cell sizes calculated via the TF and CML methods (n = 344). The boxplots represent the median and the 25th and 75th quartiles; the 
whiskers represent the minimum and maximum. The statistic method used was Student’s t test; **** represents p value < 0.0001, and “ns” represents 
“not significant”
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interference contrast (DIC) microscope. Three cell lay-
ers of the developing seed coat could be observed, i.e., 
the epidermis, sub-epidermis, and palisade. The pali-
sade layer was found to be the most characteristic and 
was used for further analysis (Additional file  9 and 11). 
Compared to those at 20 DAF, the seed coat cell walls 
at 30 DAF were thickened and became visible under 
bright-field imaging (Fig.  7a, b). We applied the CML 
method to these images (Fig.  7a, b) and achieved high 
performance in cell segmentation. Fifty-three and fifty-
five intact cells were detected for 20 DAF and 30 DAF 
images, respectively, with corresponding average cell 
areas of 244.53 μm2 and 345.89 μm2. Consistent with our 

expectations, the cell size at 30 DAF was significantly 
increased compared to that at 20 DAF (Fig.  7c, Addi-
tional file 4: Dataset S5), revealing cell expansion during 
seed development. These results suggest that the CML 
method is reliable and applicable for cell quantification of 
developing seed coats.

Quantitative evaluations of the embryo cell size of mature 
seeds
In addition to the seed coat, the embryo size also influ-
ences the seed size, thus arousing our interest in deter-
mining the embryonic cell area. We placed a mature seed 
in distilled water to soak and peeled off the seed coat, 

Fig. 7  Cell size measurement of developing seed coats via the CML method. a Image processing procedure for 20 DAF seed coats. Bar = 30 μm. b 
Image processing procedure for 30 DAF seed coats. Bar = 30 μm. c Cell parameter comparison between 20 and 30 DAF seed coats. The boxplots 
represent the median and the 25th and 75th quartiles; the whiskers represent the minimum and maximum (n = 53, 55). The cropped and mask 
images for a and b are provided in Additional file 9, 10, 11, 12
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and then treated the embryo with clearing solution to 
make it transparent. The cells on the adaxial side of the 
outer cotyledon were photographed under a microscope 
(Additional file 13). The embryo cell shape was nearly cir-
cular and could be precisely segmented by Cellpose. We 
implemented the CML method on an embryo cell image 
and identified 108 intact cells with an average area of 
164.13  μm (Fig.  8a–d). Other cell parameters were also 
generated (Fig.  8e, Additional file  4: Dataset S6). These 
results indicate that the application of the CML method 
can be extended to mature embryo cells in rapeseed.

Silique wall cell size quantification
The rapeseed pericarp/silique wall is composed of three 
layers, namely, the exocarp, mesocarp and endocarp [26]. 
The exocarp contains stomata cells and adjacent cells, 
which are irregular in shape and challenging to manually 
annotate. In previous studies, the silique cell parameters 
have mainly been calculated manually, which is labor 
intensive and arbitrary [8–10]. To test the feasibility of 
segmenting pericarp cells with Cellpose, we applied the 
CML method to silique wall samples. Developing siliques 
(10 DAF) and full-length siliques (30 DAF) were cut into 

small pieces and fixed with FAA solution. After clear-
ing, the mesocarp and endocarp were carefully scraped 
off. The outer surface of the exocarp was photomicro-
graphed (Additional file  15, 17) and processed with the 
CML method (Fig. 9a, b). In total, 90 cells were success-
fully characterized in images of 10 DAF samples. None-
theless, a fair number of cell outlines were distributed on 
stomata and adjacent cells, meaning that they were not 
applicable for quantifying silique wall cells. In addition, 
a few cells were over-split. We deleted the ROIs corre-
sponding to falsely detected cells and merged the ROIs of 
over-split cells in the “ROI manager” window and even-
tually obtained 26 ROIs. The remaining ROIs were reim-
ported into the ROI manager and measured, and then the 
results were generated in the “Results” window. The aver-
age area of 10 DAF silique wall cells was 2000.22 μm2. We 
processed the 30 DAF samples and manually corrected 
them in the same way as the 10 DAF samples. Twenty-
six correctly segmented cells remained from the 91 origi-
nally detected cells, with an average area of 6971.57 μm2. 
Despite the need for considerable calibration, we believe 
that the CML method is still more efficient and accu-
rate for this task than the manual method. In fact, the 

Fig. 8  Embryo cell size measurement of mature seeds via the CML method. a A raw cell image was cropped. Bar = 30 μm. b The cell mask was 
acquired using Cellpose. c The border labels were removed by the MorphoLibJ plugin. d The label information was transformed into ROIs by the 
LabelsToROIs plugin. e The cell parameters were acquired from image (a). The boxplots represent the median and the 25th and 75th quartiles; the 
whiskers represent the minimum and maximum (n = 108). Images a and b are provided in Additional file 13 and 14
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calibration work could be reduced by means of appro-
priate size filtering in MorphoLibJ. We compared the 
cell area, perimeter and Feret’s diameter of the 30 DAF 
silique samples to those of the 10 DAF samples and 
found a dramatic increase in all three parameters (Fig. 9c, 
Additional file 4: Dataset S7). This is consistent with the 
enlargement of siliques during their development. These 
results demonstrate that the wild range of applications of 
the CML method includes the measurement of rapeseed 
silique wall cells.

Discussion
Here we have introduced a low-cost, high-efficiency 
and high-throughput method for detecting and seg-
menting various cells from different organs in rapeseed. 
We simplified the typical photomicrograph procedure 

by skipping the fixation step and acquired high-quality 
images for cell quantification (Fig.  1). Three methods 
were developed for processing the cell images, either 
manually or automatically. We first developed the TF 
method by classifying cell cavities/walls with TWS and 
correctly detected most seed coat cells (Fig.  3). How-
ever, the TF method still suffers from a need for manual 
calibration. The CF method, in which we segment cells 
with Cellpose and automatically quantify them with 
Fiji, achieved good performance but exhibited system-
atic error. To circumvent this error and the need for 
manual calibration, we developed the CML method, in 
which the border labels are removed by MorphoLibJ 
and ROIs are detected by LabelsToROIs. The CML 
method was found to achieve human-level performance 
on bright-field images of mature/developing seed coat 

Fig. 9  Cell size measurement of developing silique walls via the CML method. a Image processing procedure for 10 DAF silique walls. Bar = 100 μm. 
b Image processing procedure for 30 DAF silique walls. Bar = 200 μm. c Cell parameter comparison between the 10 DAF and 30 DAF silique walls. 
The boxplots represent the median and the 25th and 75th quartiles; the whiskers represent the minimum and maximum (n = 26, 26). The cropped 
and mask images for a and b are provided in Additional file 15, 16, 17, 18
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cells and mature embryo cells (Figs. 5, 7 and 8) and to 
exhibit acceptable performance on images of silique 
wall cells (Fig. 9), revealing a high tolerance to miscel-
laneous cell types and shapes. Through the large-scale 
quantification of 362 manually labeled seed coat cells 
and 344 seed coat images from 172 seeds, we dem-
onstrated the robustness and accuracy of the CML 
method at both the individual cell level and the sample 
level (Fig.  6). Currently, the study of plant functional 
genomics is accelerating due to the availability of multi-
omics data and high-throughput phenotyping methods 
[27]. We anticipate that our strategy based on Cellpose 
will contribute to the data processing of plant micro-
phenotypes and the development of plant phenomics.

Cellpose is a powerful tool for segmenting cells of 
highly diverse shapes with great precision [21]. Cell-
pose generates results in the form of labeled images. 
For users without programming skills, there is still a 
gap between such labeled images and the final readable 
results. Here, we have provided a step-by-step proce-
dure for transforming the information stored in label 
images into cellular properties, thus partially filling 
this gap. We have also created several macros for batch 
analysis. We exclude the cells on the edges by means of 
MorphoLibJ because they are not intact, and thus, their 
inclusion would detrimentally affect the average cell 
parameters. The Fiji plugin LabelsToROIs can convert 
label images into ROIs in a user-friendly manner [23]. 
Thus, by integrating Cellpose, MorphoLibJ and Label-
sToROIs, we have created the CML method, which can 
function accurately and automatically. Our strategy is 
flexible and can be applied in a broad range of scenar-
ios. Importantly, any kind of labeled images can be fed 
into this method with minor modifications, and thus, 
its use is not limited to rapeseed cells.

We focused on the palisade layer of the seed coat when 
we acquired the cell images. The mature seed coat con-
sists of three layers. The palisade layer is the main protec-
tive tissue that constrains the seed size and thus attracts 
our primary interest. The epidermis/sub-epidermis layers 
are flattened or crushed at maturity [11], which are hard 
to visualize and therefore cannot be quantified using this 
method. The aleurone layer is a single layer of live cells 
with a rectangular shape, which could theoretically be 
measured using this method. Nevertheless, the aleurone 
layer is not taken into consideration here because it does 
not constrain the seed size.

The cells of palisade layer of mature seed coat are dead 
with their rigid cell walls remain [11, 25]; therefore, it is 
reasonable to postulate that the cell shape and size are 
not affected by water absorption or treatment with clear-
ing solution. However, the cells of developing seeds are 
alive, and their shape and size may be altered if not fixed. 

Thus, the fixation step can be skipped for mature seed 
coats but not for developing tissues.

We have identified several factors that may lead to 
moderate discrepancies in practice. First, the image qual-
ity significantly affects the accuracy of cell segmenta-
tion. The clarity and sharpness of the cell margins exert 
a strong influence on the segmentation results. Second, 
the number of cells in the seed coat may be miscalculated 
considering that (i) some seed shapes are different from 
a standard sphere and (ii) the cells display strong hetero-
geneity. According to our observation, the average differ-
ence between cell sizes from opposite regions of the seed 
sphere is 6.274% (Additional file 4: Dataset S4), which is 
relatively small; therefore, we believe that these regions 
can be representative for the major part of the whole 
seed. Although the estimate of the number of seed coat 
cells may be rough, it provides us with useful information 
about seed coat cell proliferation. Third, some seed coat 
cells from developing seeds are in the process of divid-
ing in a complex and asymmetric way, and such cells tend 
to be under-segmented by Cellpose (multiple cells are 
merged into one) (Fig. 7a). These discrepancies are quan-
titatively negligible and can be identified and corrected 
easily when we add the ROIs to the original images.

The integrated advanced deep learning-based algo-
rithm, Cellpose, has demonstrated its ability to seg-
ment cells from highly varied organisms or tissues [21]. 
In particular, Cellpose works well for the rectangle-like 
or polygonal cells of the rapeseed silique wall. How-
ever, the stomata and adjacent cells are often incorrectly 
segmented, necessitating further manual calibration. 
Cellpose achieves promising performance for regular-
shaped or polygon-like cells, but not for puzzle-shaped 
cells. Recently, LeafNet, a tool that can localize stomata 
and segment pavement cells, was released for processing 
bright-field microscopy images of leaf epidermis [28]. We 
have made substantial efforts to segment silique wall cells 
with LeafNet but have rarely obtained acceptable results. 
This may partially be attributed to the effects of cell shape 
diversity and image quality. Nevertheless, the strategy of 
identifying the stomata first and segmenting other cells 
on the stomata-masked images appears promising. We 
envision that more sophisticated tools will be developed 
to solve this problem.

Another software commonly used for the measure-
ment of cell parameters in plants, MorphoGraphX, 
is designed to reconstruct 3D images from datasets 
obtained via confocal imaging and performs well on 
highly curved organs [29]. However, obtaining high-qual-
ity images can be expensive and challenging. In contrast 
to MorphoGraphX, our method can only be applied to 
2D images acquired from planar tissues; however, this 
method is easy to implement and does not require costly 
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equipment, making it a useful complement to Mor-
phoGraphX. Importantly, our method provides several 
macros that run automatically, which is very attractive 
for high-throughput analysis.

Conclusion
By combining simplified image preparation, reliable cell 
segmentation and automated cell quantification, we have 
developed three methods to acquire the cell parameters 
of the seed coat, embryo and silique wall in rapeseed. 
Among these three methods, the CML method achieves 
the best performance at both the individual cell level and 
the sample level. The proposed procedure can be applied 
for the low-cost, high-throughput quantitative evaluation 
of diverse cell types, facilitating studies of rapeseed and 
other crops in the fields of developmental biology, func-
tional genomics and microphenomics.

Methods
Reagents

1.	 Chloral hydrate (Rhawn, CAS No: 302-17-0)
2.	 Glycerol (Sinopharm Chemical Reagent, CAS No: 

5-81-5)
3.	 Ethanol (Sinopharm Chemical Reagent, CAS No: 

6-17-5)
4.	 Acetic acid (Sinopharm Chemical Reagent, CAS No: 

6-19-7)
5.	 Formaldehyde (Sinopharm Chemical Reagent, CAS 

No: 5-00-0).

Equipment

1.	 Glass slide (Sail Brand, CAS No: 7101)
2.	 Microscope cover glass (Citotest Scientific, CAS No: 

10211818C)
3.	 Tweezer (Vetus, model: ST-10)
4.	 Surgical blade (Jinhuan Medical, model: K3-24)
5.	 Stereo microscope (Olympus, SZX16)
6.	 Differential interference contrast (DIC) microscope 

(Nikon, ECLIPSE 80i) with CCD camera (Nikon, 
DS-Ri1).

Software

1. Fiji (https://​imagej.​net/​softw​are/​fiji/?​Downl​oads)
2. Java version 8 or above (https://​www.​java.​com/​
en/​downl​oad/)
3. Trainable Weka Segmentation (https://​imagej.​
net/​plugi​ns/​tws/)
4. Cellpose (https://​www.​cellp​ose.​org/)

5. Anaconda (https://​www.​anaco​nda.​com/​produ​cts/​
indiv​idual).

Plant materials
The mature dry seeds of rapeseed breeding material 
7–5 were used for image acquisition and cell parame-
ter quantification. The developing seeds were acquired 
from ZY50 at 20 and 30 days after flowering. The devel-
oping siliques were acquired from ZY50 at 10 and 
30 days after flowering.

Images acquisition of mature seeds and seed coat cells

1.	 Choose fully grown seeds of rapeseed and photo-
graph each seed under a stereomicroscope.

2.	 Put individual seed in a 2  mL centrifuge tube, and 
submerge the seed in 200 μL distilled water for 6 h or 
overnight.

3.	 Cut the seeds in half and peel off the seed coat, then 
submerge the seed coat in 100  μL clearing solution 
(Hoyer’s solution, chloral hydrate:water:glycerol = 8 
weight:3 volume:1 volume) for 1 day.

4.	 Put the seed coat on a glass slide with a tweezer, 
and cut a small piece in the middle of each half of 
the seed coat (the equatorial cross-sectional area) in 
order to flatten it (the size is about 1 mm × 1 mm).

a.	 Make sure the outer surface of the seed coat is 
upward, so that the cell images will be clear and 
sharp.

b.	 The cells of the hilar region are highly compact; 
therefore, this region should be avoided.

5.	 Add a few drops of clearing solution and cover the 
sample with a microscope cover glass carefully.

6.	 Capture images of the seed coat cells under a 
400 × optical microscope, make sure the edges of the 
cells are clear; for a batch of samples, use the same 
brightness and exposure time to make the images 
uniform. Raw images with resolution 96–300 dpi (dot 
per inch) are suitable for further analysis. This resolu-
tion requirement is applicable to all other raw images 
in this article.

Seed coat cell images acquisition of developing seeds

1.	 Choose developing siliques of rapeseed and peel 
off the silique wall, then submerge the developing 
seeds/ovules in FAA solution (ethanol:water:acetic 

https://imagej.net/software/fiji/?Downloads
https://www.java.com/en/download/
https://www.java.com/en/download/
https://imagej.net/plugins/tws/
https://imagej.net/plugins/tws/
https://www.cellpose.org/
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
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acid:formaldehyde = 50:40:5:5, in volume) for 1  day. 
Note that the seeds after 30 DAF have thickened 
coat cell walls which prevent external solution to 
immerse, therefore, these seeds need to be cut in half 
first.

2.	 Wash the seeds two times with 75% ethanol and soak 
them in 200 μL clearing solution for 2 days.

3.	 Put the seed on a glass slide and cut into small pieces 
(the size is about 2  mm × 2  mm). Squeeze out the 
contents of seed cavity carefully. Make sure the 
outer surface of the seed coat is upward and the hilar 
region is avoided. For some materials (such as rape-
seed variety Westar), the epidermis is thick and need 
to be cut and scraped to expose the palisade layer.

4.	 Add a few drops of clearing solution and cover the 
sample with a microscope cover glass.

5.	 Capture images of the seed coat cells under a 
400 × optical microscope. To acquire clear images, 
we use differential interference contrast (DIC) model 
to deal with multiple cell layers.

Embryo cell images acquisition of mature seeds

1.	 Let the mature seed imbibe for 6 h.
2.	 Peel off the seed coat, then submerge the embryo in 

200 μL clearing solution for 1 day.
3.	 Put the embryo on a glass slide, push the outer coty-

ledon aside and cut into half. Make the adaxial side 
upward and add a few drops of clearing solution, 
then cover the sample with a cover glass.

4.	 Capture images of the embryo cells under a 
400 × optical microscope. Use DIC model to obtain 
clear images.

Silique wall cell images acquisition of developing siliques

1.	 Crosscut several pieces of developing silique wall of 
rapeseed (about 1 cm long), then submerge the sam-
ples in FAA solution for 1 day.

2.	 Wash the samples twice with 75% ethanol and soak 
them in clearing solution for 2 days.

3.	 Put the sample on a glass slide and scrape off the 
mesocarp and endocarp carefully. Make the outer 
surface of the exocarp upward.

4.	 Add a few drops of clearing solution and cover the 
sample with a cover glass.

5.	 Capture images of the silique wall cells under a 
200 × (for 10 DAF samples) or 100 × (for 30 DAF 

samples) optical microscope. Use DIC model to 
acquire clear images.

Seed size measurement using Fiji

1.	 Analysis procedure for a single image.

a.	 Open an image of the seed with Fiji and set a 
global scale (Analyze > Set Scale).

b.	 Convert the image to 8-bit greyscale 
(Image > Type > 8-bit).

c.	 Set threshold, for instance, to “0–100” 
(Image > Adjust > Threshold).

d.	 Measure seed area (Analyze > Analyze Particles), 
set “Size” to “1-infinity” (after Scale set), select 
“Clear results”, “Include holes”, “Summarize”, “Add 
to manage” and “In situ show”, then press “OK”.

e.	 Re-open the seed image and add ROIs to the 
original image (Image > Overlay > From ROI 
Manager), then save the image to a new folder 
(File > Save As > Tiff).

f.	 Export data to.csv file from the “Summarize” 
window (File > Save As).

2.	 Running a macro for a batch of images

All the processing steps can be recorded in Fiji 
(Plugins > Macros > Record). With the help of the 
“Recorder”, we can create a macro to automatically analy-
sis of the seed images. For example, we create a macro 
named “seedsize.ijm”, with the script provided in Addi-
tional file  3. Users can run the macro file by going to 
“Plugins > Macros > Run”, or just drag the file to Fiji win-
dow and click “Run”, then a batch of files in a single folder 
will be processed automatically. Also, users can modify 
the parameters and create their own macros. After the 
running, all data of the images can be exported to.csv file 
from the “Summarize” window (File > Save As).

Cell size measurement using Trainable Weka Segmentation 
and Fiji software
We name this method the TF method.

1.	 Preparing cell images

a.	 Open an image of the seed coat cells with Fiji and 
set a global scale (Analyze > Set Scale).

b.	 Make a rectangular selection around the 
image including about 100 cells, then go to 
“Image > Crop”; Mind that the scale bar should be 
excluded.
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c.	 For a set of images with the same magnification, 
the crop command can be recorded and run as 
a macro (Process > Batch > Macro); For instance, 
copy and paste the following text into the “Batch 
Process” window, then choose the “Input” and 
“Output” folder and click “Process”.

makeRectangle(130, 112, 774, 774);
run("Crop");

2.	 Cell segmentation using Trainable Weka Segmenta-
tion

a.	 Open a cropped image with Fiji, then go to 
“Plugins > Segmentation > Trainable Weka Seg-
mentation”.

b.	 Click “Settings” to change the class names, click 
“Create new class” to increase the number of 
classes.

c.	 Make a freehand selection around the seed cavity 
regions and click “Add to class 1”, select the seed 
wall regions and click “Add to class 2”, then click 
“Train classifier”; mind that at least two selections 
are needed for the training.

d.	 The segmentation result will be overlaid with the 
corresponding class colors. If the result is not sat-
isfied, select the misclassified regions to the right 
class, click “Train classifier” another time.

e.	 For a single image, click “Get probability” and 
save the image to a new folder. For a batch of 
images, click “Apply classifier”, choose all the 
images, then a dialog will pop up ask whether to 
store on the disk, click “Yes”; another dialog will 
pop up to ask whether to create probability maps, 
click “Yes”. Then the plugin will perform the 
image segmentation based on the current classi-
fier and store the probability maps in the select 
folder.

f.	 For more information about TWS plugin, see 
https://​imagej.​net/​plugi​ns/​tws/.

3.	 Cell count for a single image

a.	 Open the probability map, go to 
“Image > Color > Make Composite”, choose “Gray-
scale”, then click “OK”.

b.	 Two windows will pop up, close “C2-Probability 
maps” window, keep “C1-Probability maps” win-
dow in front.

c.	 Set threshold (Image > Adjust > Threshold), select 
“Black Background”, click “Apply > Convert to 
Mask”.

d.	 Process > Binary > Fill holes.
e.	 Analyze > Analyze Particles, set “Size” to “30–

400” (after Scale set), select “Clear results”, 
“Include holes”, “Summarize”, “Add to manage” 
and “In situ show”, then press “OK”.

f.	 Re-open the original image and add ROIs 
(Image > Overlay > From ROI Manager), save the 
image to a new folder.

g.	 Export data to. csv file from the “Summarize” 
window.

4.	 Cell count for a batch of images

We also create a macro named “TWS_cell_count.
ijm” that can process the probability maps and count 
cells automatically. The script is provided in Additional 
file 3.

5.	 Cell size calculation

Open the saved images with overlays, then calibrate 
the selections and acquire the accurate number of cells in 
this image. If over half of the cells are within the cropped 
area, count them in; otherwise ignore them. Calculate the 
cell size according to the following formula.

For example, if there are 97 cells in a 
170.86 × 170.86  μm2 area, then the average cell size is 
170.86 × 170.86/97 = 300.96 μm2.

Cell size measurement using Cellpose and Fiji
We name this method the CF method.

1.	 Preparing cell images.

	 The “Set Scales” and “Crop” steps are the same as the 
TF method.

2.	 Get cell masks with Cellpose.

a.	 Open Anaconda Navigator, click “Environ-
ment > Create”, enter a name and choose “Python 
3.8.12”, to create a Python3.8 environment for 
Cellpose.

Average cell size =
cropped area(µm2)

cell number

https://imagej.net/plugins/tws/
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b.	 At “Home” interface, choose the new-created 
Python3.8 environment and launch “Spyder”.

c.	 Type in “pip install Cellpose” to install Cellpose 
package, and install dependent packages if miss-
ing. For more information, see Cellpose docu-
ment (https://​cellp​ose.​readt​hedocs.​io/​en/​latest/).

d.	 Open file “getcellmask.py” and change the input 
and output folder, then run the script. The script 
is provided in Additional file  3. The cell masks 
will be saved in the output folder. The cell mask 
files can be opened by Fiji/ImageJ software to 
view the segmented cells.

3.	 Cell size measurement for a single image.

a.	 Open an image of the cell masks with Fiji and set 
a scale (Analyze > Set Scale).

b.	 Process > Find Edges.
c.	 Set threshold to “0–0” (Image > Adjust > Thresh-

old).
d.	 Analyze > Analyze Particles, set “Size” to “70–

650”, set “Circularity” to “0.4–1”, select “Dis-
play results”, “Exclude on edges”, “Clear results”, 
“Include holes”, “Summarize”, “Add to manage” 
and “In situ show”, then press “OK”.

e.	 Re-open the original image and add ROIs 
(Image > Overlay > From ROI Manager), save the 
image to a new folder.

f.	 Export average cell size data from the “Summa-
rize” window. Export single cell size data from the 
“Results” window.

4.	 Cell size measurement for a batch of images.

We create a macro named “celp_mask_sum.ijm” that 
can process the mask images and calculate the cell sizes 
automatically. The script is provided in Additional file 3.

Cell size measurement using Cellpose, MorphoLibJ 
and LabelsToROIs
We name this method the CML method.

1.	 Preparing cell images.

		  The “Set Scales” and “Crop” steps are 
the same as the TF method.

2.	 Get cell masks with Cellpose.
		  This step is the same as the CF 
method.

3.	 Cell size measurement for a single image.

a.	 Open an image of the cell masks with Fiji. Install 
MorphoLibJ and LabelsToROIs plugin if missing.

b.	 Plugins > MorphoLibJ > Binary Images > Con-
nected Components Labeling, set “Connectiv-
ity” = 4 and “Type of result” = 16 bits.

c.	 Plugins > MorphoLibJ > Label Images > Label Size 
Filtering, set “Operation” = “Greater_Than” and 
“Size Limit” = 100, this will keep the labels that 
are greater than 100 pixels.

d.	 Plugins > MorphoLibJ > Label Images > Remove 
Border Labels, choose “Left”, “Right”, “Top” and 
“Bottom”, click “OK”. Then save this file.

e.	 LabelsToROIs > Single Image, browse the original 
image and label image, then click “Next”, a new 
window will pop up and all ROIs will show on 
the original image. Edit ROIs in “ROI Manager” 
window and click “Update ROIs”. Click “Save CSV 
Table” and the results will be saved to.csv file. 
Mind that the file path should be English charac-
ters.

4.	 Cell size measurement for a batch of images.

We create a macro named “celp_mask_LabelsToROIs.
ijm” that can transform the mask images to LabelsToROIs 
format. Put LabelsToROIs format files and the original 
files in the same directory, then go to “LabelsToROIs > 
Multiple Images”, browse the path to the directory and 
click “Run”, LabelsToROIs will create a result file for each 
original image file. Run “csv_sum.R” by Rstudio in this 
directory and a summary file named “SummaryAll.csv” 
will be generated. All the scripts are provided in Addi-
tional file 3.

Seed coat cell number calculation
The seed shape of rapeseed is nearly spherical; therefore, 
the seed surface area (4πR2) is four times of seed area 
(πR2). We can calculate the number of seed coat cells 
approximately as the seed surface area divided by the 
average cell size. The formula is as following.

For instance, if the seed area is 2.6 mm2 and the average 
cell size is 251.9 μm2, then the seed coat cell number is 
2.6 × 106 × 4 / 251.9 = 41,286.

seed coat cell number

=

seed surface area
(

mm
2
)

× 10
6

average cell size(µm2)

=

seed area
(

mm
2
)

× 10
6
× 4

average cell size(µm2)

https://cellpose.readthedocs.io/en/latest/
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